Сверхпроводники

Ферми-поверхность Sr2RuO4: эффект де Гааз-ван Альфена против фотоэмиссии с угловым разрешением Открытое недавно соединение Sr2RuO4 замечательно тем, что является пока единственным

Сверхпроводники

Информация

Физика

Другие материалы по предмету

Физика

Сдать работу со 100% гаранией
верхпроводящего перехода. Он делает вывод, что нет однозначных экспериментальных свидетельств против биполяронной теории. Свой комментарий А.Александров закончил так: "Ясно, однако, что любая теория, прекрасна она или нет, не может быть разрушена “безобразными” артефактами, подобными тем, что приведены в [7]".

О том, что произошло после этого "обмена любезностями", рассказал P.Rodgers в заметке [9]. Ниже дано ее краткое изложение.

В одном из интервью А.Александров назвал последний (цитированный выше) абзац статьи [7] "нездоровым и немотивированным" и отметил, что такого же мнения придерживаются многие другие физики. На это Д.Раннингер возразил, что упомянутый абзац был добавлен к статье [7] "для того, чтобы успокоить ситуацию", а не с провокационными целями. Реакция "ВТСП-сообщества" на работу [7] оказалась неоднозначной. Например, А.Абрикосов написал Д.Раннингеру письмо, в котором были такие слова: "Я получил удовольствие от чтения вашей статьи про биполяронную сверхпроводимость. Я полностью согласен с ней и оценил два последних предложения". В то же время А.Бишоп назвал тон статьи [7] "бесполезно полемическим". "Я мог бы заметить в том же духе", - сказал А.Бишоп, - "что красота находится в глазах зрителя. В создавшейся же ситуации есть несколько зрителей".

В качестве эпиграфа к своей "обобщающей" заметке [9] P.Rodgers выбрал высказывание Д.Раннингера: "Мир теорий ВТСП - очень деликатный, с большим количеством плохой крови и рукопашного боя". Важно, что физики бранятся только… в поисках истины.

По материалам следующих публикаций:

P.W.Anderson, Phys. Rev. Lett., 1975, 34, p.953

B.K.Chakraverty et al., Phys. Rev. B, 1978, 17, p.3780

B.K.Chakraverty, J. Phys. (Paris) Lett., 1979, 40, L-99

A.S.Alexandrov and J.Ranninger, Phys. Rev. B, 1981, 23, p.1796

N.F.Mott, Physica C, 1993, 205, p.191

A.S.Alexandrov and N.F.Mott, "High Temperature Superconductors and Other Superfluids", London, 1994

B.K.Chakraverty, J.Ranninger, D.Feinberg, Phys. Rev. Lett., 1998, 81, p.433

A.S.Alexandrov, cond-mat/9807185

P.Rodgers, Science, 1998, 281, p.1427

Квантово-классический металл
В основе современных представлений о свойствах металлов лежит теория ферми-жидкости Ландау. Согласно этой теории, существует взаимно однозначное соответствие между основным и низколежащими возбужденными состояниями системы взаимодействующих электронов (то есть ферми-жидкости) и соответствующими состояниями системы невзаимодействующих электронов (то есть ферми-газа). При наличии сколь угодно сильного взаимодействия между образующими ферми-жидкость частицами оказывается, что взаимодействие между квазичастицами (элементарными возбуждениями над основным состоянием) является очень слабым в меру малости энергии этих возбуждений e : Интенсивность рассеяния квазичастиц друг на друге (то есть их обратное время жизни) пропорциональна e 2, то есть становится меньше e при достаточно малых e.

Теория ферми-жидкости применима к системам с размерностью два и более. В одномерных системах она не работает, и поиск такого типа систем был предметом интенсивных исследований. Но ведь образцы и материалы, которые исследуются экспериментально, не могут быть "чисто" одномерными! Они "в лучшем случае" сильно анизотропны, и поэтому одномерные модели, строго говоря, неприменимы к описанию их свойств. Ведь необходимо учитывать, по крайней мере, взаимодействие между "одномерными компонентами" таких образцов. А это взаимодействие может приводить к "восстановлению" ферми-жидкостных характеристик. Другими словами, надо еще доказать, что в реальных (а не модельных) и, вообще говоря, объемных образцах возможно нарушение теории ферми-жидкости.

Такое доказательство представлено в работе [D.G.Clarke et al., Science 279 (1998) 2071] сотрудников Joseph Henry Laboratories of Physics, Princeton University. Они исследовали влияние сильного магнитного поля на органический проводник (TMTSF)2PF6. Это соединение обладает очень сильной анизотропией электросопротивления (1:100:100000) при комнатной температуре. При нормальном давлении оно является диэлектриком с волной спиновой плотности, а при P>6кбар становится сверхпроводником с T1К. Увеличение магнитного поля до H>H*» 7Тл приводит не только к исчезновению сверхпроводимости, но и к полной потери когерентности в движении электронов перпендикулярно проводящим кристаллографическим слоям, тогда как когерентность сохраняется в каждом отдельно взятом слое. Это состояние не является ферми-жидкостным. Авторы назвали его "квантово-классическим металлом", который характеризуется квантовым характером переноса заряда в слоях и классическим - перпендикулярно слоям. Поскольку величина H* уменьшается с ростом P, то не исключено, что такое состояние может реализоваться и в отсутствие магнитного поля, но при очень высоких давлениях.

Изменение симметрии параметра порядка ВТСП при допировании
Любопытные результаты получены при исследовании ВТСП Bi2Sr2CaCu2O8+d с различным содержанием кислорода методом фотоэмиссионной спектроскопии (ARPES). Нули параметра сверхпроводящего порядка D , которые присутствуют в “оптимально допированных” образцах с максимальной Tc, отсутствуют в образцах с “избыточным допированием” (overdoped). Это довольно удивительно еще и потому, что электронная зонная структура обоих типов образцов практически одинакова. Полученные данные противоречат гипотезе о “чистой” dx2-y2-симметрии D . По-видимому, D является двухкомпонентной (по крайней мере) величиной, причем “удельный вес” каждой компоненты изменяется при допировании.

(По материалам “High-Tc Update”).

R.Gatt et al., “Superconducting Gap Symmetry and Doping in Bi2Sr2CaCu2O8+x“, preprint.

I.Vobornik et al., “Electronic Structure of Overdoped Bi2Sr2CaCu2O8+x“, preprint.

(тексты обоих препринтов могут быть получены по запросу у M.Onellion; e-mail: onellion@comb.physics.wisc.edu).

Сверхпроводниковый накопитель для комфортного бомоубежища от Intermagnetics
Intermagnetics General Corp. поставила и установила сверхпроводящую магнитную накопительную систему мощностью 6МДж (6MJ microSMES) на базе ВВС США в Tyndall (Florida). Cистема IPQ-750TM включает также рефрижератор (сryocooler), ВТСП токовводы, мощную электронику с коммерческой системой бесперебойного питания (UPS). Накопитель интегрирован в автономный комплекс передвижного бомбоубежища (“Mobile/Relo-catable Shelter”) и рассчитан на бесперебойную работу в течение 24 часов в сутки. Компактное бомбоубежище имеет размеры 16 x 2.8 x 2.8м3.

ВВС США является лидером в продвижении накопителей в военную технику. На сегодня, кроме Intermagnetics, коммерческие накопители изготавливает и устанавливает American Superconductor.

"Разрушение" поверхности Ферми в высокотемпературных сверхпроводниках с низким уровнем допирования
Электроны являются фермионами, поэтому ни одно квантовое состояние не может быть занято сразу двумя электронами (принцип Паули). Это, собственно, и приводит к разнообразию свойств индивидуальных атомов в Периодической Таблице. Что касается больших атомных систем, то именно в силу принципа Паули электроны не "сваливаются" в одно состояние с минимальной энергией, а однородно распределяются по импульсному пространству, занимая состояния с энергиями, не превышающими некоторую минимальную энергию, которая называется энергией Ферми. Таким образом, электроны как бы формируют в импульсном пространстве (в периодических системах - в зоне Бриллюэна) некое подобие "капли". Энергия электронных состояний на поверхности этой "капли" (поверхности Ферми) равна энергии Ферми. Деформация и колебания поверхности Ферми определяют коллективные свойства металлов.

ВТСП, открытые 12 лет назад, представляют собой качественно новый тип металлов: перемещение электронов в ВТСП ограничено проводящими слоями CuO2; в направлении, перпендикулярном этим слоям, проводимость очень низкая, а зона Бриллюэна является практически двумерной. Многие необычные свойства ВТСП проистекают, по-видимому, из коррелированного движения электронной жидкости в пределах слоев CuO2. Специфические особенности этого движения формируются при температуре, превышающей температуру сверхпроводящего перехода Tc, и "оставляют свои следы" на поверхности Ферми.

Единственный, известный на сегодня надежный способ экспериментального определения параметров поверхности Ферми в ВТСП - это фотоэмиссионная спектроскопия с угловым разрешением. Когда высокоэнергетичный фотон рассеивается на исследуемом образце, он "выселяет" электрон из занятого им состояния, в результате чего в электронной жидкости образуется "дырка". Анализ интенсивности выбитых электронов дает информацию об изначальном распределении электронов по энергии и импульсу. Этим методом было установлено, что в ВТСП с оптимальным уровнем допирования (то есть с такой концентрацией носителей заряда, при которой Tc конкретной системы максимальна) двумерная поверхность Ферми имеет форму квадрата со скругленными краями [1,2].

Лучшие

Похожие работы

<< < 2 3 4 5 6 7 8 9 10 > >>