Атомические разложения функций в пространстве Харди

  Кашин Б.С., Саакян А.А. Ортогональные ряды М.: Наука, 1984.495с. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа

Атомические разложения функций в пространстве Харди

Информация

Математика и статистика

Другие материалы по предмету

Математика и статистика

Сдать работу со 100% гаранией

Міністерство Освіти України

 

Одеський державний університет

 

ім. І.І.Мечнікова

 

Інститут математики, економіки та механіки

 

 

 

 

Атомічні розкладення функцій

у просторі Харді

 

 

 

 

Дипломна робота

студентки V курсу

факультету математики

Семенцовой В.А.

 

Науковий керівник

Вартанян Г.М.

 

 

 

 

 

 

 

Одеса - 2000

 

 

 

 

Содержание

 

Введение.................................................................................... 3

 

Глава I. Основные сведения об интеграле Пуассона и

пространствах , и ................................. 8

§I.1. Интеграл Пуассона..................................................... 8

§I.2. Пространства ....................................................... 12

§I.3. Пространства и ......................................... 17

§I.4. Произведение Бляшке, нетангенциальная

максимальная функция............................................... 22

 

Глава II. Атомические разложения функции в пространстве

, пространство ВМО........................................ 26

§II.1. Пространство , критерий принадлежности

функции из пространству ....................... 26

§II.2. Линейные ограниченные функционалы на ,

двойственность и ВМО.................................. 32

 

Литература.................................................................................. 37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение.

 

Целью настоящей работы является изучение основных понятий и результатов, полученных в области пространств Харди, которая не изучалась в рамках университетского курса. В работе прослежена взаимосвязь между следующими понятиями : интеграл Пуассона, пространства , , и , раскрыта суть и структура этих объектов. Описание указанных понятий вводится именно в такой последовательности , так как определение каждого последующего объекта дается на основе понятий, расположенных левее в выше перечисленном ряду объектов.

Работа состоит из двух глав, каждая из которых делится на параграфы. В первой главе изучены свойства пространств , , , а во второй мы доказываем коитерий принадлежности функции из пространству и двойственность пространств и .

В работе мы рассматриваем случай периодических функций. Используемые обозначения имеют следующий смысл:

- пространство периодических, непрерывных на функций;

- пространство периодических, бесконечно дифференцируемых на функций;

- пространство периодических, суммируемых в степени р на функций, т.е.для которых , ;

- пространство периодических ограниченных на функций;

- носитель функции .

 

 

В §I.1.вводится понятие интеграла Пуассона: интегралом Пуассона суммируемой на [-,] 2-периодической комплекснозначной функции называется функция

r ( x ) = ,

где , t - ядро Пуассона.

Здесь мы доказываем следующие свойства ядра Пуассона, которые мы неоднократно будем использовать в ряде доказательств:

а) ;

б) ;

в) для любого >0

Основной целью данного параграфа являются две теоремы о поведении интеграла Пуассона при :

Теорема 1.

Для произвольной (комплекснозначной) функции ( -, ) , 1 p < , имеет место равенство

;

если же (x) непрерывна на [ -, ] и (-) = () , то

.

Теорема 2 (Фату).

Пусть - комплекснозначная функция из . Тогда

для п.в. .

В этом параграфе мы обращались к следующим понятиям:

Определение1. Функция называется аналитической в точке , если она дифференцируема в этой точке и в некоторой ее окрестности. Говорят, что функция аналитична на некотором множестве,если она аналитична в каждой точке этого множества.

Определение2. Действительная функция двух действительных переменных называется гармонической в области , если и удовлетворяет уравнению Лапласа:

.

Определение3. Две гармонические функции и , связанные условиями Коши-Римана : , , называются гармонически сопряженными функциями.

Определение4. Под нормой пространства понимается

, .

Определение5. Под нормой пространства понимается

, .

Определение6. Пусть ( или ,). Модуль непрерывности ( соответственно интегральный модуль непрерывности) функции определяется равенством

, .

(, ).

Определение7. Последовательность функций, определенных на множестве Х с заданной на нем мерой, называется сходящейся почти всюду к функции , если для почти всех , т.е. множество тех точек , в которых данное соотношение не выполняется, имеет меру нуль.

В §I.2 мы рассматриваем пространства - это совокупность аналитических в единичном круге функций F (z) , для которых конечна норма

.

Основным результатом этого параграфа является теорема о том, что любую функцию () можно предсавить в виде

, , ,

где для п.в. , при этом

;

.

Использованные в данном параграфе понятия мы принимаем в следующих определениях:

Определение8. Говорят, что действительная функция , заданная на отрезке [a,b], имеет ограниченную вариацию, если существует такая постоянная , что каково бы ни было разбиение отрезка [a,b] точками выполнено неравенство .

Определение9. Действительная функция , заданная на отрезке [a,b], называется абсолютно непрерывной на [a,b], если для любого найдется число такое, что какова бы ни была система попарно непересекающихся интервалов , с суммой длин, меньшей : , выполняется неравенство .

В третьем параграфе первой главы мы переходим к рассмотрению пространств и . Пространство () представляет собой совокупность тех функций , , которые являются граничными значениями функций (действительных частей функций) из, т.е. представимы в виде (). Здесь мы получаем следующие результаты: при пространство совпадает с , а при р=1 уже, чем , и состоит из функций , для которых и .

В §I.4 мы вводим понятие произведения Бляшке функции , аналитической в круге с нулями , () с учетом их кратности:

,

где - кратность нуля функции при .

Здесь доказывается, что каждая функция представима в виде

, где не имеет нулей в круге и , ,а - произведение Бляшке функции .

Затем мы рассматриваем понятие нетангенциальной максимальной функции . Пусть , , - произвольное число. Обозначим через , , область, ограниченную двумя касательными, проведенными из точки к окружности , и наибольшей из дуг окружности, заключенных между точками касания ( при вырождается в радиус единичного круга). Для положим

, ,

где - интеграл Пуассона функции . Функция называется нетангенциальной максимальной функцией для .

Тут же мы доказываем теорему об оценке : если (), , то и .

Первые результаты о максимальных функциях были получены в 1930 году Харди и Литтлвудом.

Во второй главе два параграфа.

В §II.1 рассматривается пространство . Как ранее отмечалось, оно уже, чем . Поэтому в данном параграфе большой интерес представляет теорема - критерий принадлежности функции пространству . Здесь вводится понятие атома: действительная функция называется атомом, если существует обобщенный интервал такой, что

а) ; б) ; в) .

Атомом назовем также функцию , . Под обобщенным интервалом понимается либо интервал из , либо множество вида ().

Данный параграф посвящен аналогу теоремы, доказанной в 1974 году Р.Койфманом о том, что функция тогда и только тогда, когда функция допускает представление в виде

, , где , , - атомы. (*)

При этом , где inf берется по всем разложениям вида (*) функции , а с и С - абсолютные константы.

Роль атомических разложений заключается в том, что они в ряде случаев позволяют свести вывод глубоких фактов к относительно простым действиям с атомами.

В частночти, из атомического разложения функций, принадлежащих пространству , легко вытекает полученный в 1971 году Ч.Фефферманом результат о двойственности пространств и . Доказательству этого факта и посвящен второй параграф данной главы. Сперва мы вводим определение : пространство ВМО есть совокупность всех функций , удовлетворяющих условию

, (91)

где , а sup берется по всем обобщенным интервалам . А затем доказываем теорему о том, что .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 <

Похожие работы

1 2 3 4 5 > >>