Разработка термогенератора, который будет использовать тепло двигателя для зарядки автомобильного аккумулятора

Автомобильный индукционный генератор работает по следующему принципу. При работе двигателя автомобиля, механическое движение коленчатого вала передается ротору генератора с помощью

Разработка термогенератора, который будет использовать тепло двигателя для зарядки автомобильного аккумулятора

Курсовой проект

Физика

Другие курсовые по предмету

Физика

Сдать работу со 100% гаранией

ВВЕДЕНИЕ

термоэлектрический генератор автомобиль топливо

Актуальность исследования. Современный мир невозможно представить себе без автомобилей. Если только 80 лет назад они были чем-то фантастическим, то сейчас это уже необходимый агрегат для каждого человека с нормальным достатком. Неудивительно, что на данный момент есть много вопросов по конструкции автомобиля, требующие решения. Одной из важных проблем современных авто есть подзарядка автомобильного аккумулятора. На данный момент основным способом подзарядки является использование ременной передачи от коленчатого вала двигателя к валу индукционного электрогенератора, который заряжает аккумулятор и питает электрические приборы автомобиля. Такая конструкция далека от совершенства. Во-первых, при такой передаче теряется значительное количество энергии, во-вторых, с ремнем и собственно самим генератором часто возникают проблемы, из-за чего они требуют замены.

Таким образом, возникает проблема создания нового типа автомобильных генераторов, не имеющих перечисленных недостатков.

Объектом исследования является изучение работы термогенераторов, которые смогут стать заменой индукционных автомобильных генераторов.

Предметом исследований является разработка нового автомобильного генератора работающего за счет тепла, выделяемого двигателем авто.

Рабочая гипотеза исследования: можно создать новый автомобильный термогенератор, который будет подходить для всех конструкций двигателей и сможет полностью заменить старые модели автомобильных генераторов.

Цель исследования: разработать термогенератор, что будет использовать тепло двигателя для зарядки автомобильного аккумулятора.

Чтобы достичь этой цели необходимо решить следующие задачи:

. Проанализировать принцип работы и возможности современных термогенераторов.

. Установить физические процессы, которые можно использовать для создания автомобильного термогенератора.

. Разработать эффективный автомобильный термоелектрогенератор.

В процессе работы были использованы следующие методы исследования:

теоретический анализ исследуемой проблемы;

теоретический анализ физических процессов для создания такого термогенератор;

физико-технический эксперимент, который позволит подтвердить эффективность использования такого генератора.

Научная новизна проведенного научного исследования состоит в следующем:

Впервые предложен универсальный термогенератор, который можно использовать для любых конструкций автомобильных двигателей, и сможет полностью заменить индукционные электрические генераторы автомобилей.

Практическая значимость полученных результатов - это создание термоэлектрического генератора, который упрощает обслуживания автомобиля и уменьшает расход топлива.

1. СОВРЕМЕННЫЕ СПОСОБЫ ЗАРЯДКИ АВТОМОБИЛЬНЫХ ГЕНЕРАТОРОВ.

 

.1 Строение индукционного генератора автомобиля

 

На данный момент основным способом подзарядки автомобильного аккумулятора, есть генератор, который на основе явления электромагнитной индукции превращает механическую энергию движения коленчатого вала в электроэнергию. Он имеет следующее строение (рис. 1.1)

 

Рис. 1.1

 

. Шкив - предназначен для передачи механической энергии от двигателя к валу генератора с помощью ремня.

. Корпус генератора - состоит из двух крышек: передней (со стороны шкива) и задней (со стороны контактных колец), предназначенные для крепления статора, установка генератора на двигателе и размещения подшипников (опор) ротора. На задней крышке размещены диодный мост (выпрямитель электрического тока), щеточным узел, регулятор напряжения и внешние выводы для подключения к системе электрооборудования.

. Ротор - стальной вал с размещенным на нем двумя стальными втулками кпювоподибной формы. Между ними находится обмотка возбуждения, выводы которой соединены с контактными кольцами. Генераторы оборудованы преимущественно цилиндрическими медными контактными кольцами.

. Статор - пакет, набранный из стальных листов, что имеет форму трубы. В его пазах размещена трехфазная обмотка, в которой производится ЭДС генератора, то есть в автомобильных генераторах роль якоря играет статор.

. Диодный мост - объединяет шесть мощных диодов установленных по три в положительном и отрицательном направлении, предназначен для выпрямления переменного тока.

. Регулятор напряжения - устройство, поддерживающее напряжение электрической системы автомобиля в заданных рамках при изменении электрической нагрузки, частоты вращения ротора генератора и температуры окружающей среды.

. Щеточный узел - пластмассовая конструкция, в которой установлены подпружиненные щетки, контактирующие с кольцами ротора;

. Крышка диодного модуля - защищает генератор от повреждений.

 

1.2 Принцип действия индукционного генератора автомобиля

 

Автомобильный индукционный генератор работает по следующему принципу. При работе двигателя автомобиля, механическое движение коленчатого вала передается ротору генератора с помощью клинового ремня. В этот момент на кольца индуктора генератора с помощью щеток подается напряжение. В индукторе возникает ток, создающий магнитное поле. Так как индуктор является ротором, т.е. вращается, то создаваемое им магнитное поле будет переменным. Это переменное магнитное поле пронизывает обмотку статора и порождает в ней переменный ток. Далее с помощью диодного моста переменный ток преобразуют в постоянный. Далее он подается к регулятору напряжения, а оттуда к электрической системе автомобиля. Напряжение в этой системе, при работающем генераторе, примерно равно 13,5-14,5 В. Это выше уровня напряжения в аккумуляторе, поэтому этот ток способен заряжать аккумулятор. Такие генераторы имеют КПД 50-60% и мощность 500 - 700 Вт.

Слабыми местами такого генератора является щёточный узел и диодный мост. Именно они чаще всего выходят из строя, что влечет отказ в работе генератора. Также периодической замены требует ремень ременной передачи генератора. Кроме того, генератор потребляет энергию двигателя, уменьшая его мощность (с учетом КПД генератора) примерно на 1000 Вт.

Исходя, из потребленной мощности установим количество горючего, которое тратится на работу генератора автомобиля в течение одного часа.

Работу генератора А найдем по формуле -

 

(1.1)

 

где Р - мощность генератора, t - время работы генератора. Эта работа выполняется за счет сгорания топлива в двигателе автомобиля. Поэтому ее можно рассчитать следующим образом -

 

(1.2)

 

где η - КПД двигателя, а Q - количество теплоты полученной за счет сгорания топлива. Пусть КПД теплового двигателя 40%. Q найдем по формуле -

(1.3)

 

где q - удельная теплота сгорания топлива (для бензина q = 4,6 · 107 (Дж / кг)). Массу m найдем по формуле , где ρ - плотность топлива (для бензина ρ = 700 (кг/м3)), а V - объем топлива. С учетом приведенного выше имеем -

 

(1.4)

 

Откуда -

 

(1.5)

 

Подставим к полученному выражению данные -

.

То есть, при движении автомобиля по городу со средней скоростью 50 км/ч, на каждые 100 км для обеспечения работы генератора расходуется около 0,56 л бензина.

Выводы: автомобильные индукционные генераторы требуют постоянного технического обслуживания и потребляют значительное количество топлива, поэтому они требуют хотя бы какой альтернативы, или - полной замены на более современные генераторы.

2. АВТОМОБИЛЬНЫЙ термогенератор

 

.1 Теплопередача

 

Применение автомобильного термогенератора требует ознакомления с явлением теплопередачи [1] [2]. Теплопередачей называют изменение внутренней энергии термодинамической системы без выполнения над ней работы. В нашем устройстве тепло будет передаваться от горячей трубы глушителя через песок в термогенератор (Рис. 2.1) далее его часть будет превращаться в электрическую энергию, а часть рассеиваться в окружающую среду.

 

Рис. 2.1

 

В такой системе процесс передачи теплоты происходит в 3 стадии (Рис. 2.2):

 

Рис. 2.2

- Теплоотдача от поверхности глушителя к песку, описывают формулой -

 

Q = kαStΔT1 (2.1)

 

Теплопроводность через песок; описывают формулой

 

(2.2)

 

Теплоотдача с поверхности песка к термогенератору, описывают формулой

 

Q = αStΔT3. (2.3)

 

Совокупность этих трех таких процессов называется теплопередачей.

Если Q - количество теплоты, переносится через песок, k - коэффициент теплопередачи, S - площадь поверхности, через которую происходит теплопередача, l-толщина теплопроводного слоя песка, t - длительность процесса, разница температур двух сред, α1 - коэффициент теплоотдачи на первой граничной поверхности песка, α2 - коэффициент теплоотдачи на второй предельной поверхности песка, теплопроводность твердого тела (песка) (табличная величина), то с учетом того, что тепловой поток на всех участках теплообмена должен оставаться постоянным, имеем:

 

(2.4)

 

При этом сумма всех ризниц температур равна общей разности температур:

ΔТ = ΔТ1 + ΔТ2 + ΔТ3. (2.5)

 

Из выражений (2.4) и (2.5) получается.

 

(2.6) .

 

Преобразуем выражение (2.6)

 

(2.7)

 

Величина, обратная выражения в скобках, называется коэффициентом теплопередачи:

 

(2.8)

 

Похожие работы

1 2 >