Разработка и исследование вероятностных эволюционных алгоритмов для моделирования и оптимизации сложных систем

Тестовая задачаТип селекцииГА с одноточечным скрещиванием (низкая мутация)ГА с одноточечным скрещиванием (высокая мутация)ГА с равномерным скрещиванием по всей популяции (низкая

Разработка и исследование вероятностных эволюционных алгоритмов для моделирования и оптимизации сложных систем

Диссертация

Менеджмент

Другие диссертации по предмету

Менеджмент

Сдать работу со 100% гаранией

 

 

 

 

 

 

 

 

 

 

 

 

РАЗРАБОТКА И ИССЛЕДОВАНИЕ ВЕРОЯТНОСТНЫХ ЭВОЛЮЦИОННЫХ АЛГОРИТМОВ ДЛЯ МОДЕЛИРОВАНИЯ И ОПТИМИЗАЦИИ СЛОЖНЫХ СИСТЕМ

 

Содержание:

 

Введение

Глава I. Разработка и исследование вероятностного генетического алгоритма для оптимизации сложных систем

.1 Основные свойства задач оптимизации сложных систем и возможные подходы к их решению

.1.1 Метод бинаризации

.1.2 Коды Грея

.1.3 Тестовые задачи

.2 Стандартный генетический алгоритм и исследование его работоспособности на тестовых задачах

.2.1 Представление решений в ГА

.2.2 Общая схема ГА

.2.3 Инициализация

.2.4 Селекция

.2.5 Скрещивание

.2.6 Мутация

.2.7 Пригодность индивидов (fitness-функция)

.2.8 Исследование работоспособности на тестовых задачах

.3 Метод изменяющихся вероятностей (МИВЕР) и исследование его работоспособности на тестовых задачах

.3.1 Общая схема МИВЕР

.3.2 Исследование работоспособности на тестовых задачах

.4 Основные идеи вероятностного генетического алгоритма и исследование его работоспособности на тестовых функциях

.4.1 Общая схема вероятностного генетического алгоритма

.4.2 Исследование работоспособности на тестовых задачах

.5 Алгоритм прогноза сходимости вероятностного генетического алгоритма

.6 Выводы

Глава II. Разработка и исследование метода вероятностного генетического программирования для моделирования сложных систем

.1 Методы решения задач аппроксимации в моделировании сложных систем

.2 Обычный метод генетического программирования для решения задачи символьной регрессии и его исследование

.2.1 Представление решений в методе генетического программирования

.2.2 Общая схема метода генетического программирования, применение основных генетических операторов

.2.3 Решение задачи символьной регрессии с помощью метода генетического программирования

.2.4 Исследование работоспособности на тестовых задачах

.3 Основные идеи вероятностного генетического программирования и его исследование

.3.1 Общая схема метода вероятностного генетического программирования

.3.2 Исследование работоспособности на тестовых задачах

.4 Выводы

Глава III. Практическая реализация разработанных алгоритмов

.1 Программная реализация обыкновенного и вероятностного генетического алгоритмов

.1.1 Программная система «GA lab»

.1.2 Программная система «ProbGA lab»

.2 Программная реализация методов обыкновенного и вероятностного генетического программирования

3.2.1 Программная система «GP: Symbolic Regression»

.2.2 Программная система «ProbGP: Symbolic Regression»

3.3 Постановка задачи оптимизации работы электростанции на топливных элементах в стационарном режиме

.3.1 Водородные топливные элементы - основные принципы

.3.2 Теплоэлектростанции на топливных элементах

.3.3 Математическая модель электростанции на топливных элементах

.3.4 Постановка задачи оптимизации

.4 Решение задачи оптимизации работы электростанции на топливных элементах в стационарном режиме с помощью вероятностного генетического алгоритма

.4.1 Исследование устойчивости решения

.5 Выводы

Заключение

Список использованных источников

Приложение 1. Общая схема конструирования многоэкстремальных функций непрерывных переменных

Приложение 2. Набор тестовых задач

 

Введение

 

Идея оптимальности является центральной идеей кибернетики. Понятие оптимальности получило строгое и точное представление в математических теориях, прочно вошло в практику проектирования и эксплуатирования технических систем, сыграло важную роль в формировании современных системных представлений. Оптимизация - один из способов выражения рационального поведения. Математически задача оптимизации формулируется как задача поиска экстремума некоторого функционала, выражающего зависимость выходных параметров исследуемого объекта (системы, процесса) от входных [11, 34].

При решении задач оптимизации сложных систем часто встречаются ситуации, которые затрудняют или делают невозможным применение классических методов. Поэтому задача разработки адаптивных стохастических методов прямого поиска является весьма актуальной.

За прошедшие годы было предложено много различных схем применения эволюционных алгоритмов для решения сложных задач оптимизации [35, 36, 58, 61, 62]. Генетические алгоритмы с бинарным представлением решений занимают особое место среди стохастических методов адаптивного поиска. Особая сложность разработки и исследования алгоритмов связана с тем, что большинство методов прямого поиска основано на различных эвристических идеях. Перспективным направлением является разработка методов комбинирующих эвристические идеи интеллектуальных информационных технологий и строгий формальный аппарат современной математики.

В ситуациях, когда с объектом нельзя активно экспериментировать, оптимизация производится по модели объекта. Если экспертные знания об объекте в явном виде отсутствуют, то обычно по имеющимся статистическим данным строится некоторая вычислительная модель (например, статистические методы, нейронные сети, непараметрический подход). Однако недостаток численной модели заключается в том, что она, по сути, является «черным ящиком». В результате никакой дополнительной информации для оптимизации мы извлечь из «черного ящика» не можем.

Символьная регрессия дает нам не только вычислительную процедуру, но и формулу (символьное математическое выражение), которую можно было бы подвергнуть содержательному анализу, упростить, а затем и уточнить. Однако на современном этапе методы символьной регрессии не разработаны достаточно хорошо, поэтому направление разработки и следования подобных методов является актуальным. Метод генетического программирования является наиболее перспективным направлением.

Цель работы: разработка и исследование комплексной системы моделирования и оптимизации сложных систем на основе алгоритма вероятностного генетического программирования (моделирование сложных систем путем решения задач символьной регрессии) и вероятностного генетического алгоритма (оптимизация сложных систем с применением построенной модели).

Для достижения поставленной цели необходимо решить следующие задачи:

1.Провести анализ основных свойств задач оптимизации сложных систем и возможных подходов к их решению.

2.Программно реализовать и провести анализ сравнительной эффективности метода изменяющихся вероятностей и генетического алгоритма с бинарным представлением решений.

.Разработать и программно реализовать алгоритм поиска, комбинирующий эвристические идеи генетического алгоритм и формальный аппарат современной математики. Показать работоспособность предложенного вероятностного генетического алгоритма на тестовых и практических задачах, сравнить с известными алгоритмами.

.Провести анализ методов решения задачи символьной регрессии.

.Разработать и программно реализовать алгоритм решения задачи символьной регрессии с помощью метода генетического программирования. Показать его работоспособность на тестовых задачах.

.Разработать метод генетического программирования, использующий механизм вероятностного генетического алгоритма. Программно реализовать и показать работоспособность предложенного подхода на тестовых задачах.

Методы исследования. Для решения поставленных задач использовались методы системного анализа, теории вероятности, математической статистики, псевдобулевой оптимизации и эволюционных алгоритмов.

Научная новизна результатов диссертации:

1.Разработан новый метод решения сложных задач оптимизации - вероятностный генетический алгоритм, и показана его работоспособность на тестовых и практических задачах.

2.Проведен сравнительный анализ эффективности вероятностного генетического алгоритма и классического генетического алгоритма, и показано, что вероятностный генетический алгоритм превосходит классический как по надежности, так и по быстродействию.

.Разработан новый метод решения задачи символьной регрессии - вероятностный алгоритм генетического программирования, и доказана его работоспособность на тестовых задачах.

Практическая значимость. Предложенный вероятностный генетический алгоритм использован при решении актуальной практической задачи - оптимизаций работы электростанции на топливных элементах в установившемся режиме. Полученные с помощью вероятностного генетического алгоритма параметры позволяют повысить эффективность работы станции на 6.5%, что подтверждено официальным сертификатом от Института прикладных исследований при Высшей технической школе г. Ульм (Германия).

На основе предложенных алгоритмов разработаны современные программные системы, которые позволяют в рамках одного подхода решать задачи моделирования и параметрической оптимизации сложных систем.

Предложенные в диссертации алгоритмы и программные системы используются в учебном процессе при проведении занятий по специальным курсам «Системы искусственного интеллекта» и «Адаптивные и эволюционные методы принятия решений» в Сибирском государственном аэрокосмическом университете, а также по общему курсу «Методы оптимизации» и специальным курсам «Системный анализ и управление» и «Эволюционные алгоритмы оптимизации» в Красноярском государственном университете.

Основные защищаемые положения:

1.Пр

Похожие работы

1 2 3 4 5 > >>