Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины в среде MATLAB

Зрительная работа - уже в первые годы компьютеризации было отмечено специфическое зрительное утомление у пользователей дисплеев, получившее общее название "компьютерный

Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины в среде MATLAB

Дипломная работа

Компьютеры, программирование

Другие дипломы по предмету

Компьютеры, программирование

Сдать работу со 100% гаранией
й обмотки, Rа=Rb=Rс=RR - активное сопротивление роторной обмотки.

Вторым используемым законом является закон Ампера, который связывает потокосцепления обмоток с токами, протекающими по обмоткам:

Для статора:

 

(3.2 а)

Для ротора:

 

(3.2 б)

 

Удивительно симметричные уравнения для определения потокосцеплений показывают, что потокосцепление каждой обмотки зависит от токов во всех обмотках; эти зависимости проявляются через взаимоиндукцию. В уравнениях (3.2) LАА, LBB, LCC, Laa, Lbb, Lcc, являются собственными индуктивностями соответствующих обмоток, все остальные - взаимоиндуктивностями между соответствующими обмотками.

Третьим законом, лежащим в основе анализа, является второй закон Ньютона - закон равновесия моментов на валу машины:

 

(3.3)

 

где J (кгм2) - момент инерции на валу машины, учитывающий инерционность как самой машины, так и приведенной к валу инерционности рабочего механизма и редуктора, - угловая скорость вала машины, (Нм) - момент рабочего механизма, приведенный к валу, в общем случае он может быть функцией скорости и угла поворота, .

Наконец, четвертым и последним законом, лежащим в основа анализа машины, является закон, сформулированный Ленцем, как правило левой руки. Этот закон связывает векторные величины момента, потокосцепления и тока:

.(3.4)

 

Следует сразу подчеркнуть, что, несмотря на полное и строгое математическое описание, использование уравнений (3.1) - (3.4) для исследования машины встречает серьезные трудности. Из них основные:

- в уравнениях (3.3 и 3.4) фигурируют векторные величины, а в уравнениях (3.1 и 3.2) скалярные;

- количество взаимосвязанных уравнений равно 16, а количество коэффициентов - 44;

- коэффициенты взаимоиндукции между обмотками статора и ротора в уравнениях (3.2) являются функцией угла поворота ротора относительно статора, то есть уравнения (3.2) являются уравнениями с переменными коэффициентами;

- уравнение (3.4) является нелинейным, так как в нем перемножаются переменные.

 

3.2 Метод пространственного вектора

 

На пути упрощения математического описания асинхронной машины, да и вообще всех машин переменного тока, удивительно удачным и изящным оказался метод пространственного вектора, который позволил существенно упростить и сократить вышеприведенную систему уравнений; метод позволяет связать уравнения (3.1-3.4) в единую систему с векторными переменными состояния. Суть метода состоит в том, что мгновенные значения симметричных трехфазных переменных состояния (напряжения, токи, потокосцепления) можно математически преобразовать так, чтобы они были представлены одним пространственным вектором. Это математическое преобразование имеет вид (например, для тока статора):

(3.5)

 

где - векторы, учитывающие пространственное смещение обмоток, - симметричная трехфазная система токов статора.

Подставив в уравнения (3.5) значение мгновенных токов, найдем математическое описание пространственного вектора статорного тока:

 

(3.6)

 

На рис. 3.1 представлена геометрическая интерпретация пространственного вектора тока - это вектор на комплексной плоскости с модулем (длиной) Im, вращающийся с угловой скоростью в положительном направлении. Проекции вектора на фазные оси А, В, С определяют мгновенные токи в фазах. Аналогично пространственными векторами можно представить все напряжения, токи и потокосцепления, входящие в уравнения (3.1), (3.2).

Теперь можно переходить к упрощению уравнений.

 

Рисунок 3.1 - Пространственный вектор тока

Шаг первый. Для преобразования уравнений (3.1) в мгновенных значениях к уравнениям в пространственных векторах умножим их на выражения: первые уравнения на , вторые на , третьи на , - и сложим раздельно для статора и ротора. Тогда получим:

 

(3.7)

 

где LS, LR - собственные индуктивности статора и ротора, Lm() -взаимная индуктивность между статором и ротором. Таки образом, вместо двенадцати уравнений (3.1)-(3.2) получено лишь четыре уравнения (3.7).

Шаг второй. Переменные коэффициенты взаимной индукции уравнениях для потокосцеплений (3.7) являются результатом того, что уравнения равновесия ЭДС для статора записаны в неподвижно системе координат, связанной со статором, а уравнения равновесия ЭДС для ротора записаны во вращающейся системе координат, связанной с ротором. Метод пространственного вектора позволяет записать эти уравнения в единой системе координат, вращающейся произвольной скоростью к. В этом случае уравнения (3.7) преобразуются к виду:

 

(3.8)

где = рm, р - число пар полюсов в машине.

В уравнениях (3.8) все коэффициенты являются величинами постоянными, имеют четкий физический смысл и могут быть определены по паспортным данным двигателя, либо экспериментально.

Шаг третий. Этот шаг связан с определением момента. Момент в уравнении (3.4) является векторным произведением любой пары векторов. Из уравнения (3.8) следует, что таких пар может быть шесть . Часто в рассмотрение вводится потокосцепление взаимной индукции . В этом случае появляется ещё четыре возможности представления электромагнитного момента машины через следующие пары: . После выбора той или иной пары уравнение момента приобретает определенность, а количество уравнений в системе (3.8) сокращается до двух. Кроме того, в уравнениях (3.3) и (3.4) векторные величины момента и скорости могут быть заменены их модульными значениями. Это является следствием того, что пространственные векторы токов и потокосцеплений расположены и плоскости, перпендикулярной оси вращения, а векторы момента и угловой скорости совпадают с осью. В качестве примера запись уравнений момента через некоторые пары переменных состояния машины имеет вид:

 

(3.9)

 

В конечном виде уравнения обобщённой асинхронной машины имеют вид:

(3.10)

 

3.3 Математическая модель асинхронной машины в осях, вращающихся с произвольной скоростью

 

Уравнения асинхронной машины с короткозамкнутым ротором или машины с фазной обмоткой, если к ней не подключено питающее напряжение, можно получить из уравнений (3.10), если в этих уравнениях положить .

 

(3.11)

 

Для динамических систем необходимо учитывать переходные электромагнитные процессы в машине. В этом случае в качестве пары переменных, описывающих машину, оставим пространственные векторы тока статора и потокосцепления ротора (), тогда уравнения (3.11) с учётом уравнений для потокосцеплений (3.8) после соответствующих преобразований примут вид:

 

(3.12)

 

где - коэффициенты.

 

3.4 Математическая модель асинхронной машины в неподвижной системе координат

 

Для того чтобы лучше понять физические процессы, происходящие в асинхронной машине, исследуем машину в неподвижной системе координат.

В неподвижной комплексной системе координат () вещественная ось обозначается через , а мнимая через . Пространственные векторы в этом случае раскладываются по осям:

. Подставив эти значения в уравнения (3.12) и приравняв отдельно вещественные и мнимые части, получим:

(3.13)

4. РАЗРАБОТКА МОДЕЛИ АСИНХРОННОГО ДВИГАТЕЛЯ (АД) В ПРОГРАММЕ MATLAB

 

4.1 Пакет визуального программирования Simulink

 

Одной из наиболее привлекательных особенностей системы MATLAB является наличие в ней наглядного и эффективного средства составления программных моделей - пакета визуального программирования Simulink.

Пакет Simulink позволяет осуществлять исследование (моделирование во времени) поведения динамических линейных и нелинейных систем, причем составление «программы» и ввод характеристик систем можно производить в диалоговом режиме, путем сборки на экране схемы соединений элементарных (стандартных или пользовательских) звеньев. В результате такой сборки получается модель системы (называемая S-моделью), которая сохраняется в файле с расширением *.mdl. Такой процесс составления вычислительных программ принято называть визуальным программированием.

S-модель может иметь иерархическую структуру, то есть состоять из моделей более низкого уровня, причем количество уровней иерархии практически не ограничено. В процессе моделирования есть возможность наблюдать за процессами, которые происходят в системе. Для этого используются специальные блоки («обзорные окна»), входящие в состав библиотеки Simulink. Библиотека может быть пополнена пользователем за счет разработки собственных блоков.

Создание моделей в пакете Simulink основывается на использовании технологии Drag-and-Drop (шаг за шагом). В качестве «кирпичиков» при построении S-модели применяются визуальные блоки (модули), которые сохраняются в библиотеках Simulink.

Библиотека блоков Simulink (рисунок 4.1) это набор визуальных объектов, при использовании которых, соединяя отдельные блоки между собой линиями связей, можно составлять функциональную блок-схему любого устройства.

 

Рисунок 4.1 - Окно Simulink Library Browser

 

Сборка блок-схемы S-модели заключается в том, что графические изображения выбранных блоков с помощью мыши перетягиваются из окна раздела библиотеки в окно блок-схемы, а затем выходы одних блоков в окне блок-схемы соединяю

Похожие работы

<< < 1 2 3 4 5 6 7 8 9 > >>