Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины в среде MATLAB

Зрительная работа - уже в первые годы компьютеризации было отмечено специфическое зрительное утомление у пользователей дисплеев, получившее общее название "компьютерный

Разработка виртуальной лабораторной работы на базе виртуальной асинхронной машины в среде MATLAB

Дипломная работа

Компьютеры, программирование

Другие дипломы по предмету

Компьютеры, программирование

Сдать работу со 100% гаранией
ой ток в сети и пусковой момент двигателя уменьшаются в K2A раз. В этом случае величина пускового момента при прочих равных условиях будет больше, чем при реакторном пуске, что, безусловно, является преимуществом способа пуска короткозамкнутых асинхронных двигателей с помощью автотрансформатора.

 

2.5 Способы пуска АД с фазным ротором

 

В тех случаях, когда требуется большое значение пускового вращающего момента, используют асинхронные двигатели с фазным ротором.

Пуск этих двигателей осуществляется с помощью активных сопротивлений (реостатов), последовательно включаемых в цепь ротора (рисунок 2.7, а).

а)б)

Рисунок 2.7 - а) схема пуска асинхронного двигателя с фазным ротором, б) кривые зависимости вращающего момента от скольжения при различных значениях пусковых сопротивлений

 

Реактивное сопротивление ротора Х2 всегда больше его активного сопротивления, вследствие чего для увеличения пускового момента двигателя необходимо вводить в цепь ротора активное добавочное сопротивление. Благодаря этому активное сопротивление цепи ротора увеличивается, что приводит к снижению как величины тока ротора I2, так и пускового тока статора I1. Значит, при определенных условиях, несмотря на уменьшение тока I2, вращающий момент может даже увеличиться. Подключение двигателя к сети при сниженном пусковом токе, не будет вызывать резких изменений ее напряжения.

Для того чтобы величина момента при разгоне двигателя изменялась в меньших пределах и пуск проходил быстрее, пуск выполняют ступенчатым.

Двигатель с фазным ротором, пускаемый в ход с помощью ступенчатого пускового реостата, обладает хорошими пусковыми характеристиками, позволяющими сохранить за все время разбега большой пусковой момент, сокращая тем самым время разгона.

Пусковые реостаты обычно изготовляются трехфазными из металлической проволоки или ленты повышенного удельного сопротивления (нихром, фехраль). Величину сопротивления выбирают с таким расчетом, чтобы отношение пускового и номинального токов Iп/Iном было равно 2-2,5.

На рисунке 2.7, б изображены кривые зависимости вращающего момента от скольжения при различных значениях пусковых сопротивлений в процессе пуска асинхронных двигателей с фазным ротором.

 

2.6 Регулирование скорости АД с короткозамкнутым ротором

 

Изменение скорости вращения двигателей с короткозамкнутым ротором возможно при изменении частоты f1, U1 и числа пар полюсов р. К способам регулирования скорости предъявляются весьма высокие требования как в отношении их экономичности и надежности в работе, так и в отношении пределов и плавности регулирования.

 

2.6.1 Регулирование скорости изменением частоты питающей сети

Частота промышленных сетей f1 обычно постоянна и равна 50 Гц. Поэтому для изменения частоты питающей сети требуется применять преобразователь частоты. Следует иметь в виду, что при изменении частоты напряжения на зажимах, магнитный поток, ток холостого хода, вращающий момент, мощность и другие параметры машины в общем случае также не остаются постоянными. Механические характеристики при изменении частоты f1 и постоянном напряжении представлены на рисунке 2.8.

При регулировании скорости желательно сохранять перегрузочную способность, для этого необходимо одновременно и пропорционально изменять частоту и ЭДС обмотки статора или питающее напряжение U1, так как оно мало отличается от ЭДС. Этот способ позволяет обеспечить широкий диапазон плавного и экономичного регулирования скорости. Механические характеристики при этом способе регулирования скорости представлены на рисунке 2.9.

 

Рисунок 2.8 - Механические характеристики при различных частотах и неизменном напряжении

 

Рисунок 2.9 - Механические характеристики при пропорциональном изменении частоты и напряжения

2.6.2 Регулирование скорости изменением числа пар полюсов

Так как скорость вращения вращающегося поля ω1 = 60f1/p, при постоянном значении частоты сети f1 зависит только от числа пар полюсов этого поля, то, изменяя его, можно изменить также и скорость вращения ротора двигателя. Этот способ дает возможность регулировать скорость вращения асинхронного двигателя без таких больших потерь мощности, как при реостатном способе, что достигается за счет усложнения и удорожания конструкции машины.

Ввиду того, что число пар полюсов р может быть только целым числом, при переключении числа пар полюсов изменение скорости будет происходить ступенчато. Такие двигатели часто называются многоскоростными.

Разместив на статоре две отдельные обмотки (одну на р пар полюсов, а другую на p1 пар полюсов) и включая их поочередно, можно получить две скорости вращения поля, а следовательно, и две скорости вращения ротора. Отношение скоростей будет обратно пропорционально отношению числа пар полюсов.

Ротор двигателя при этом должен иметь короткозамкнутую обмотку, для которой число полюсов создаваемого поля всегда равно числу полюсов вращающегося поля обмотки статора.

 

Рисунок 2.10 - Изменение числа пар полюсов асинхронного двигателя переключением цепей обмотки статора: а - при большем числе полюсов; б - при числе полюсов в 2 раза меньшем

Более простым и дешевым является способ, при котором на статоре укладывается одна обмотка, позволяющая производить изменение числа пар полюсов обмотки статора. Увеличение или уменьшение пар полюсов, например, вдвое может быть произведено сравнительно просто. Для этого каждая фаза обмотки статора делится на две одинаковые части - полуобмотки и в одной из них изменяется направление тока.

На рисунке 2.10 показаны схемы обмотки статора при изменении числа пар полюсов в отношении 2:1.

Следовательно, при переключении числа пар полюсов могут быть изменены характеристики обмотки и индукция в воздушном зазоре.

Различными способами переключения числа пар полюсов можно осуществить работу двигателя в двух режимах: 1) сохраняя постоянство вращающего момента и изменение мощности пропорционально скорости вращения (переключение обмотки со звезды на двойную звезду); 2) сохраняя примерное постоянство мощности и изменение вращающего момента обратно пропорционально скорости вращения (переключение обмотки с треугольника на двойную звезду).

Асинхронные двигатели с переключением числа пар полюсов изготовляют в основном как двухскоростные и реже (небольшой мощности) как трех- и четырехскоростные. Трех- и четырехскоростные двигатели выпускают с двумя обмотками на статоре, причем одну из них или обе выполняют с переключением числа пар полюсов.

К недостаткам многоскоростных двигателей следует отнести их увеличенные размеры по сравнению с нормальными асинхронными двигателями и более высокую стоимость.

 

2.6.3 Регулирование скорости изменением напряжения источника питания

Диапазон регулирования скорости не большой и снижается с уменьшением нагрузки, так как максимальный момент, развиваемый двигателем, зависит от квадрата напряжения источника питания. Так при уменьшении напряжения в 2 раза, максимальный момент уменьшится в 4 раза. Способ целесообразно применять для двигателей с повышенным скольжением (мягкой характеристикой) иначе диапазон регулирования будет незначительным. Серийно выпускаются тиристорные и транзисторные регуляторы напряжения.

 

2.7 Регулирование скорости АД с фазным ротором

 

Для АД с фазным ротором используются следующие способы регулирования скорости: реостатный, изменением питающего напряжения, и введением добавочной ЭДС в цепь ротора.

Схема регулирования скорости вращения асинхронных двигателей с фазным ротором при помощи реостата в цепи ротора не отличается от схемы пуска, изображенной на рисунке 2.7, а.

Как это было показано выше (см. рисунок 2.7, б), увеличение активного сопротивления в цепи ротора делает механическую характеристику более пологой, что приводит к увеличению скольжения, а следовательно, к уменьшению скорости вращения.

Этот способ дает возможность регулировать скорость вращения в широких пределах от номинальной до полной остановки. Плавность регулирования скорости будет зависеть от числа ступеней.

Однако такой способ регулирования скорости неэкономичен, так как он связан с большими непроизводительными потерями энергии в реостатах.

Однако, несмотря на неэкономичность этого способа регулирования скорости вращения асинхронного двигателя, он довольно часто применяется на практике, в основном для регулирования скорости вращения двигателей небольшой мощности и при кратковременной работе на малых скоростях.

Также регулирование скорости можно получить путём одновременного ввода добавочного сопротивления в цепь ротора и понижением напряжения источника питания. При таком способе необходимо учесть, что максимальный момент уменьшается пропорционально квадрату напряжения, а также механическая характеристика становится мягче.

3. МАТЕМАТИЧЕСКИЕ МОДЕЛИ АСИНХРОННОЙ МАШИНЫ

 

3.1 Математическое описание обобщённой машины

 

Обобщённая асинхронная машина содержит трёхфазную обмотку на роторе и статоре. Обмотки подключены к симметричным источникам напряжения. Математическое описание такой машины базируется на известных законах.

Уравнения равновесия ЭДС на обмотках статора и ротора базируется на втором законе Кирхгофа.

Для статора: Для ротора:

 

(3.1)

 

В уравнениях (3.1) фигурируют мгновенные напряжения, токи и потокосцепления статора и ротора, а также активные сопротивления обмоток. Обычно обмотки выполняются симметричными, к поэтому RА=RВ=RС=Rs - активное сопротивление статорно

Похожие работы

<< < 1 2 3 4 5 6 7 8 > >>