Аппаратные средства персональных компьютеров

Компьютерные шины "второго поколения", например NuBus </w/index.php?title=NuBus&action=edit&redlink=1> решали некоторые из вышеперечисленных проблем. Они обычно разделяли компьютер на две "части", процессор

Аппаратные средства персональных компьютеров

Информация

Компьютеры, программирование

Другие материалы по предмету

Компьютеры, программирование

Сдать работу со 100% гаранией
%B5%D0%BD%D0%B8%D0%B5&action=edit&redlink=1>. Процесс регенерации реализуется специальным контроллером </wiki/%D0%9A%D0%BE%D0%BD%D1%82%D1%80%D0%BE%D0%BB%D0%BB%D0%B5%D1%80>, установленным на материнской плате </wiki/%D0%9C%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%BD%D1%81%D0%BA%D0%B0%D1%8F_%D0%BF%D0%BB%D0%B0%D1%82%D0%B0> или в центральном процессоре. DRAM обычно используется в качестве оперативной памяти </wiki/%D0%9E%D0%BF%D0%B5%D1%80%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%B0%D1%8F_%D0%BF%D0%B0%D0%BC%D1%8F%D1%82%D1%8C> (ОЗУ </wiki/%D0%9E%D0%97%D0%A3>) компьютеров </wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80>. В настоящее время выпускается в виде модулей памяти </wiki/%D0%9C%D0%BE%D0%B4%D1%83%D0%BB%D1%8C_%D0%BF%D0%B0%D0%BC%D1%8F%D1%82%D0%B8> - небольшой печатной платы </wiki/%D0%9F%D0%B5%D1%87%D0%B0%D1%82%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BB%D0%B0%D1%82%D0%B0>, на которой размещены микросхемы </wiki/%D0%98%D0%BD%D1%82%D0%B5%D0%B3%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%81%D1%85%D0%B5%D0%BC%D0%B0> запоминающего устройства.

На ферромагнетиках </wiki/%D0%A4%D0%B5%D1%80%D1%80%D0%BE%D0%BC%D0%B0%D0%B3%D0%BD%D0%B5%D1%82%D0%B8%D0%BA%D0%B8>

Ферромагнитная - представляет собой матрицу из проводников </wiki/%D0%9F%D1%80%D0%BE%D0%B2%D0%BE%D0%B4%D0%BD%D0%B8%D0%BA>, на пересечении которых находятся кольца или биаксы </wiki/%D0%91%D0%B8%D0%B0%D0%BA%D1%81>, изготовленные из ферромагнитных материалов. Достоинства - устойчивость к радиации </wiki/%D0%98%D0%BE%D0%BD%D0%B8%D0%B7%D0%B8%D1%80%D1%83%D1%8E%D1%89%D0%B5%D0%B5_%D0%B8%D0%B7%D0%BB%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5>, сохранение информации при выключении питания; недостатки - малая ёмкость, большой вес, стирание информации при каждом чтении. В настоящее время в таком, собранном из дискретных компонентов виде, не применяется. Однако к 2003 году </wiki/2003_%D0%B3%D0%BE%D0%B4> появилась магнитная память MRAM </wiki/MRAM> в интегральном исполнении. Сочетая скорость SRAM и возможность хранения информации при отключённом питании, MRAM является перспективной заменой используемым ныне типам ROM </wiki/ROM> и RAM. Однако она на 2006 год </wiki/2006_%D0%B3%D0%BE%D0%B4> была приблизительно вдвое дороже микросхем SRAM (при той же ёмкости и габаритах).

 

  • 12. Системная шина и локальная шина

 

Компьютерная ши́на (от англ. </wiki/%D0%90%D0%BD%D0%B3%D0%BB%D0%B8%D0%B9%D1%81%D0%BA%D0%B8%D0%B9_%D1%8F%D0%B7%D1%8B%D0%BA> computer bus, bidirectional universal switch - двунаправленный универсальный коммутатор </wiki/%D0%9A%D0%BE%D0%BC%D0%BC%D1%83%D1%82%D0%B0%D1%82%D0%BE%D1%80>) - в архитектуре компьютера </wiki/%D0%90%D1%80%D1%85%D0%B8%D1%82%D0%B5%D0%BA%D1%82%D1%83%D1%80%D0%B0_%D0%BA%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%D0%B0> подсистема, которая передаёт данные между функциональными блоками компьютера. Обычно шина управляется драйвером </wiki/%D0%94%D1%80%D0%B0%D0%B9%D0%B2%D0%B5%D1%80>. В отличие от связи точка-точка, к шине можно подключить несколько устройств по одному набору проводников. Каждая шина определяет свой набор коннекторов </wiki/%D0%9A%D0%BE%D0%BD%D0%BD%D0%B5%D0%BA%D1%82%D0%BE%D1%80> (соединений) для физического подключения устройств, карт и кабелей.

Ранние компьютерные шины представляли собой параллельные электрические шины </w/index.php?title=%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B0%D1%8F_%D1%88%D0%B8%D0%BD%D0%B0&action=edit&redlink=1> с несколькими подключениями, но сейчас данный термин используется для любых физических механизмов, предоставляющих такую же логическую функциональность, как параллельные компьютерные шины. Современные компьютерные шины используют как параллельные, так и последовательные соединения и могут иметь параллельные (multidrop) и цепные (daisy chain) топологии. В случае USB </wiki/USB> и некоторых других шин могут также использоваться хабы </wiki/%D0%A1%D0%B5%D1%82%D0%B5%D0%B2%D0%BE%D0%B9_%D0%BA%D0%BE%D0%BD%D1%86%D0%B5%D0%BD%D1%82%D1%80%D0%B0%D1%82%D0%BE%D1%80> (концентраторы).

Первое поколение

Ранние компьютерные </wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80> шины были группой проводников, подключающей компьютерную память </wiki/%D0%9A%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%D0%BD%D0%B0%D1%8F_%D0%BF%D0%B0%D0%BC%D1%8F%D1%82%D1%8C> и периферию </wiki/%D0%9F%D0%B5%D1%80%D0%B8%D1%84%D0%B5%D1%80%D0%B8%D0%B9%D0%BD%D0%BE%D0%B5_%D1%83%D1%81%D1%82%D1%80%D0%BE%D0%B9%D1%81%D1%82%D0%B2%D0%BE> к процессору. Почти всегда для памяти и периферии использовались разные шины, с разным способом доступа, задержками, протоколами.

Одним из первых усовершенствований стало использование прерываний </wiki/%D0%9F%D1%80%D0%B5%D1%80%D1%8B%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5>. До их внедрения компьютеры выполняли операции ввода-вывода в цикле ожидания готовности периферийного устройства. Это было бесполезной тратой времени для программ, которые могли делать другие задачи. Также, если программа пыталась выполнить другие задачи, она могла проверить состояние устройства слишком поздно и потерять данные. Поэтому инженеры дали возможность периферии прерывать процессор </wiki/%D0%9F%D1%80%D0%BE%D1%86%D0%B5%D1%81%D1%81%D0%BE%D1%80>. Прерывания имели приоритет, так как процессор может выполнять только код для одного прерывания в один момент времени, а также некоторые устройства требовали меньших задержек, чем другие.

Некоторое время спустя, компьютеры стали распределять память между процессорами. На них доступ к шине также получил приоритеты.

Классический и простой способ обеспечить приоритеты прерываний или доступа к шине заключался в цепном подключении устройств.</wiki/Digital_Equipment_Corporation> отмечала, что две разные шины могут быть излишними и дорогими для малых, серийных компьютеров и предложила отображать периферийные устройства на шину памяти, так, что они выглядели как области памяти. В то время это было очень смелым решением, и критики предсказывали ему провал.

Первые миникомпьютерные шины представляли пассивные объединительные платы, подключенные к контактам микропроцессора. Память и другие устройства подключались к шине с использованием тех же контактов адреса и данных, что и процессор. Все контакты были подключены параллельно. В некоторых случаях, например в IBM PC </wiki/IBM_PC>, необходимы дополнительные инструкции процессора для генерации сигналов, чтобы шина была настоящей шиной ввода-вывода.

Во многих микроконтроллерах и встраиваемых системах </wiki/%D0%92%D1%81%D1%82%D1%80%D0%B0%D0%B8%D0%B2%D0%B0%D0%B5%D0%BC%D0%B0%D1%8F_%D1%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D0%B0> шины ввода-вывода до сих пор не существует. Процесс передачи контролируется ЦПУ, который в большинстве случаев читает и пишет информацию в устройства, так, как будто они являются блоками памяти. Все устройства используют общий источник тактового сигнала. Периферия может запросить обработку информации путём подачи сигналов на специальные контакты ЦПУ, используя какие-либо формы прерываний. Например, контроллер жёсткого диска </wiki/%D0%96%D1%91%D1%81%D1%82%D0%BA%D0%B8%D0%B9_%D0%B4%D0%B8%D1%81%D0%BA> уведомит процессор о готовности новой порции данных для чтения, после чего процессор должен считать их из области памяти, соответствующей контроллеру. Почти все ранние компьютеры были построены по таким принципам, начиная от Altair </wiki/Altair> с шиной S-100 </w/index.php?title=S-100_(%D0%BA%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%D0%BD%D0%B0%D1%8F_%D1%88%D0%B8%D0%BD%D0%B0)&action=edit&redlink=1> (англ. <http://en.wikipedia.org/wiki/S-100_bus>), заканчивая IBM PC </wiki/IBM_PC> в 1980-х </wiki/1980-%D0%B5>.

Такие простые шины имели серьёзный недостаток для универсальных компьютеров. Всё оборудование на шине должно было передавать информацию на одной скорости и использовать один источник синхросигнала </w/index.php?title=%D0%A1%D0%B8%D0%BD%D1%85%D1%80%D0%BE%D1%81%D0%B8%D0%B3%D0%BD%D0%B0%D0%BB&action=edit&redlink=1>. Увеличение скорости процессора было непростым, так как требовало такого же ускорения всех устройств. Это часто приводило к ситуации, когда очень быстрым процессорам приходилось замедляться для возможности передачи информации некоторым устройствам. Хотя это допустимо для встраиваемых систем, данная проблема непозволительна для коммерческих компьютеров. Другая проблема состоит в том, что процессор требуется для любых операций, и когда он занят другими операциями, реальная пропускная способность </wiki/%D0%9F%D1%80%D0%BE%D0%BF%D1%83%D1%81%D0%BA%D0%BD%D0%B0%D1%8F_%D1%81%D0%BF%D0%BE%D1%81%D0%BE%D0%B1%D0%BD%D0%BE%D1%81%D1%82%D1%8C> шины может значительно страдать.

Такие компьютерные шины были сложны в настройке, при наличии широкого спектра оборудования. Например, каждая добавляемая карта расширения могла требовать установки множества переключателей для задания адреса памяти, адреса ввода-вывода, приоритетов и номеров прерываний.

Второе поколение

Компьютерные шины "второго поколения", например NuBus </w/index.php?title=NuBus&action=edit&redlink=1> решали некоторые из вышеперечисленных проблем. Они обычно разделяли компьютер на две "части", процессор и память в одной и различные устройства в другой. Между частями устанавливался специальный контроллер шин (bus controller). Такая архитектура позволила увеличивать скорость процессора без влияния на шину, разгрузить процессор от задач управления шиной. При помощи контроллера устройства на шине могли взаимодействовать друг с другом без вмешательства центрального процессора. Новые шины имели лучшую производительность, но также требовали более сложных карт расширения. Проблемы скорости часто решались увеличением разрядности

Похожие работы

<< < 2 3 4 5 6 7 8 > >>