Применение тригонометрической подстановки для решения алгебраических задач

Литература Алгебра и математический анализ. 10 класс: Учебное пособие для школ и классов с углубленным изучением математики / Н. Я. Виленкин,

Применение тригонометрической подстановки для решения алгебраических задач

Дипломная работа

Математика и статистика

Другие дипломы по предмету

Математика и статистика

Сдать работу со 100% гаранией
и сначала посмотрят, нельзя ли записать уравнение проще, введя новую переменную. При этом не стоит забывать, что, во-первых, далеко не всегда замена бывает столь уж необходима. Во-вторых, если приходится прибегать к замене неизвестной, то стоит сразу подобрать ее так, чтобы она вбирала в себя по возможности большее количество неприятных деталей, затрудняющих решение.

Умение удачно ввести новую переменную важнейший элемент математической культуры школьника. При этом искусство производить замену переменных заключается в том, чтобы увидеть, какая замена будет более рациональна и быстрее приведет к успеху.

Новая переменная иногда очевидна, иногда несколько завуалирована, но «ощущается». В более сложных случаях, для того чтобы найти удачную замену неизвестной, требуется дополнительная творческая работа, которая впоследствии окупается простотой и изящностью решения.

Учить методу замены, выбору удачных новых переменных следует специально еще и потому, что не всегда учащиеся могут додуматься до него самостоятельно. В таких случаях удобную подстановку желательно знать заранее. Особенно трудно учащимся представить себе, что вместо переменной можно подставить тригонометрическую функцию, поскольку при этом, как кажется, алгебраическое выражение усложняется. Однако известные свойства тригонометрических функций упрощают некоторые уравнения, неравенства и их системы, в то время как прямое алгебраическое решение оказывается более сложным технически. Таким образом, тригонометрическую подстановку можно назвать нестандартным методом решения стандартных по постановке задач уравнений, неравенств и их систем.

§2. Тригонометрическая подстановка

Тригонометрическая подстановка является одним из способов реализации метода замены переменной и используется в тех случаях, когда область определения исходного уравнения совпадает с областью значения тригонометрической функции или включается в эту область. Выбор той или иной функции при этом зависит от вида уравнения, неравенства, их систем или алгебраического выражения, которое требуется упростить.

Если из условия задачи следует, что допустимые значения переменной определяются неравенством , то удобны замены или . В первом случае достаточно рассмотреть , так как на этом промежутке непрерывная функция возрастает, поэтому каждое свое значение принимает ровно в одной точке. Непрерывная функция убывает на промежутке , поэтому также каждое свое значение принимает ровно в одной точке. Вот почему в случае замены , достаточно взять . Причем какую из двух подстановок выбрать, зависит от конкретной ситуации.

В случаях, когда переменная может принимать любые действительные значения, используются замены или , так как область значения функции и на соответствующих промежутках есть множество всех действительных чисел.

Реже используются замены или , где , а выбор значений снова зависит от конкретной ситуации.

Когда выражение зависит от двух переменных и , целесообразно положить , , где . Такая замена законна. Действительно, для любых и существует такое , что . При имеем . А числа, сумма квадратов которых равна единице, по модулю не превосходят единицы и их можно рассматривать как синус и косинус некоторого угла. Геометрический смысл такой замены состоит в следующем: для каждой точки определяется расстояние до начала координат и угол наклона вектора к положительному направлению оси абсцисс.

И последнее замечание. Реализовать такую подстановку не так уж трудно, главное и, наверное, самое сложное суметь ее увидеть. Поэтому целесообразно помочь учащимся научиться распознавать «приметы» тригонометрических подстановок. Содержание следующей главы направлено на выработку соответствующих умений.

Глава 2

ПРИМЕНЕНИЕ МЕТОДА

ТРИГОНОМЕТРИЧЕСКОЙ ПОДСТАНОВКИ ПРИ РЕШЕНИИ ЗАДАЧ

§1. Решение уравнений

  1. Иррациональные уравнения

Иррациональные уравнения часто встречаются на вступительных экзаменах по математике, так как с их помощью легко диагностируется знание таких понятий, как равносильные преобразования, область определения и другие. Методы решения иррациональных уравнений, как правило, основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным, которое либо равносильно исходному иррациональному уравнению, либо является его следствием. Чаще всего обе части уравнения возводят в одну и ту же степень. Эквивалентность не нарушается при возведении обеих частей в нечетную степень. В противном случае требуется проверка найденных решений или оценка знака обеих частей уравнения. Но существуют и другие приемы, которые могут оказаться более эффективными при решении иррациональных уравнений. Например, метод тригонометрической подстановки.

Пример 1. Решите уравнение

[12].

Решение с помощью тригонометрической подстановки

Так как , то . Поэтому можно положить . Уравнение примет вид

.

Положим , где , тогда

.

.

.

Ответ: .

Алгебраическое решение

.

Так как , то . Значит, , поэтому можно раскрыть модуль

.

Ответ: .

Решение уравнения алгебраическим способом требует хорошего навыка проведения тождественных преобразований и грамотного обращения с равносильными переходами. Но в общем оба приема решения равноценны.

Пример 2. Решите уравнение

[14].

Решение с помощью тригонометрической подстановки

Область определения уравнения задается неравенством , что равносильно условию , тогда . Поэтому можно положить . Уравнение примет вид

.

Так как , то . Раскроем внутренний модуль

.

Положим , тогда

.

Условию удовлетворяют два значения и .

.

.

Ответ: .

Алгебраическое решение

.

Возведем в квадрат уравнение первой системы совокупности, получим

.

Пусть , тогда . Уравнение перепишется в виде

.

Проверкой устанавливаем, что корень, тогда делением многочлена на двучлен получаем разложение правой части уравнения на множители

.

От переменной перейдем к переменной , получим

.

Условию удовлетворяют два значения

.

Подставив эти значения в исходное уравнение, получаем, что корень.

Решая аналогично уравнение второй системы исходной совокупности, находим, что тоже корень.

Ответ: .

Если в предыдущем примере алгебраическое решение и решение с помощью тригонометрической подстановки были равноценны, то в данном случае решение подстановкой выгоднее. При решении уравнения средствами алгебры приходится решать совокупность из двух уравнений, то есть дважды возводить в квадрат. После этого неравносильного преобразования получаются два уравнения четвертой степени с иррациональными коэффициентами, избавиться от которых помогает замена. Еще одна трудность проверка найденных решений подстановкой в исходное уравнение.

Пример 3. Решите уравнение

[31].

Решение с помощью тригонометрической подстановки

Так как , то . Заметим, что отрицательное значение неизвестного не может быть решением задачи. Действительно, преобразуем исходное уравнение к виду

.

Множитель в скобках в левой части уравнения положительный, правая часть уравнения тоже положительная, поэтому множитель в левой части уравнения не может быть отрицательным. Вот почему , тогда , поэтому можно положить Исходное уравнение перепишется в виде

.

Так как , то и . Уравнение примет вид

.

Пусть . Перейдем от уравнения к равносильной системе

.

Числа и являются корнями квадратного уравнения

.

.

Ответ: .

Алгебраическое решение

Возведем обе части уравнения в квадрат

.

Введем замену , тогда уравнение запишется в виде

.

Второй корень является лишним, поэтому рассмотрим уравнение

.

Так как , то .

Ответ: .

В данном случае алгебраическое решение в техническом плане проще, но рассмотреть приведенное решение с помощью тригонометрической подстановки следует обязательно. Это связано, во-первых, с нестандартностью самой подстановки, которая разрушает стереотип, что применение тригонометрической подстановки возможно лишь, когда . Оказывается, если тригонометрическая подстановка тоже находит применение. Во-вторых, представляет определенную трудность решение тригонометрического уравнения , которое сводится введением замены к системе уравнений. В определенном смысле эту замену тоже можно считать нестандартной, а знакомство с ней позволяет обогатить арсенал приемов и методов решения тригонометрических уравнений.

Пример 4. Решить уравнение

[4].

Решение с помощью тригонометрической подстановки

Так как переменная может принимать любые действительные значения, положим . Тогда

,

,так как .

Исходное уравнение с учетом проведенных преобразований примет вид

.

Так как , поделим обе части уравнения на , получим

.

Пусть , тогда . Уравнение примет вид

.

.

Учитывая подстановку , получим совокупность из двух уравнений

.

Решим каждое уравнение совокупности по отдельности.

1) .

.

не может быть значением синуса, так как для любых значений аргумента.

.

Откуда

.

Так как и правая часть исходного уравнения положительна, то . Из чего следует, что .

2)

Похожие работы

< 1 2 3 4 5 6 > >>