Аналоговая и цифровая аудио и видеоинформация

Практически все рассматриваемые ниже видеоплаты построены

Аналоговая и цифровая аудио и видеоинформация

Реферат

Компьютеры, программирование

Другие рефераты по предмету

Компьютеры, программирование

Сдать работу со 100% гаранией

АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

 

Факультет математики и информационных технологий

 

Кафедра Информационные системы

 

 

 

Курс: "Введение в специальность

 

 

 

 

 

РЕФЕРАТ

на тему: «Аналоговая и цифровая аудио и видеоинформация".

 

 

 

Выполнил:

студент гр. ИМ-11

Юдин М.А.

 

 

Проверила:

Чернышова Н.А.

 

 

г. Астрахань 2006

Содержание.

 

 

 

1. Введение.3

2. Отличия цифрового представления сигналов от аналогового.3

3.Способы представления звука в цифровом виде.4

4.MPEG Layer 3.5

5. Видеоинформация.7

5.1. В начале был аналог.7

5.2. Цифровое видео.7

5.3. Основные характеристики цифрового видео.8

6. Сжатие видеоинформации.9

6.1. Основные принципы сжатия видеоданных.9

6.2. Методы сжатия видеоданных.10

7.Основы MPEG-кодирования видео.11

7.1. Стандарт компрессии видеоданных MPEG-2.11

7.2.MPEG-4. Что это такое?11

8. Преимущества цифровой передачи видеоданных.12

9. Заключение.12

10. Список использованной литературы.13

1. Введение.

 

Появление систем мультимедиа, безусловно, произвело революционные изменения в таких областях, как образование, компьютерный тренинг, во многих сферах профессиональной деятельности, науки, искусства, в компьютерных играх и т.д. Но, согласитесь, невозможно представить себе современные мультимедиа системы без звука и видео. В данной работе я хотел бы остановиться на рассмотрении принципиальных отличий представления цифровых сигналов от аналоговых, особенностях цифровой аудио и видеоинформации, алгоритмах их сжатия (компрессии).

 

 

2. Отличия цифрового представления сигналов от аналогового.

 

Традиционное аналоговое представление сигналов основано на подобии (аналогичности) электрических сигналов (изменений тока и напряжения) представленным ими исходным сигналам (звуковому давлению, температуре, скорости и т.п.), а также подобии форм электрических сигналов в различных точках усилительного или передающего тракта. Форма электрической кривой, описывающей (также говорят - переносящей) исходный сигнал, максимально приближена к форме кривой этого сигнала.

Такое представление наиболее точно, однако малейшее искажение формы несущего электрического сигнала неизбежно повлечет за собой такое же искажение формы и сигнала переносимого. В терминах теории информации, количество информации в несущем сигнале в точности равно количеству информации в сигнале исходном, и электрическое представление не содержит избыточности, которая могла бы защитить переносимый сигнал от искажений при хранении, передаче и усилении.

Цифровое представление электрических сигналов призвано внести в них избыточность, предохраняющую от воздействия паразитных помех. Для этого на несущий электрический сигнал накладываются серьезные ограничения - его амплитуда может принимать только два предельных значения - 0 и 1.

Вся зона возможных амплитуд в этом случае делится на три зоны: нижняя представляет нулевые значения, верхняя - единичные, а промежуточная является запрещенной - внутрь нее могут попадать только помехи. Таким образом, любая помеха, амплитуда которой меньше половины амплитуды несущего сигнала, не оказывает влияния на правильность передачи значений 0 и 1. Помехи с большей амплитудой также не оказывают влияния, если длительность импульса помехи ощутимо меньше длительности информационного импульса, а на входе приемника установлен фильтр импульсных помех.

Сформированный таким образом цифровой сигнал может переносить любую полезную информацию, которая закодирована в виде последовательности битов - нулей и единиц; частным случаем такой информации являются электрические и звуковые сигналы. Здесь количество информации в несущем цифровом сигнале значительно больше, нежели в кодированном исходном, так что несущий сигнал имеет определенную избыточность относительно исходного, и любые искажения формы кривой несущего сигнала, при которых еще сохраняется способность приемника правильно различать нули и единицы, не влияют на достоверность передаваемой этим сигналом информации. Однако в случае воздействия значительных помех форма сигнала может искажаться настолько, что точная передача переносимой информации становится невозможной - в ней появляются ошибки, которые при простом способе кодирования приемник не сможет не только исправить, но и обнаружить. Для еще большего повышения стойкости цифрового сигнала к помехам и искажениям применяется цифровое избыточное кодирование двух типов: проверочные (EDC - Error Detection Code, обнаруживающий ошибку код) и корректирующие (ECC - Error Correction Code, исправляющий ошибку код) коды. Цифровое кодирование состоит в простом добавлении к исходной информации дополнительных битов и/или преобразовании исходной битовой цепочки в цепочку большей длины и другой структуры. EDC позволяет просто обнаружить факт ошибки - искажение или выпадение полезной либо появление ложной цифры, однако переносимая информация в этом случае также искажается; ECC позволяет сразу же исправлять обнаруженные ошибки, сохраняя переносимую информацию неизменной. Для удобства и надежности передаваемую информацию разбивают на блоки (кадры), каждый из которых снабжается собственным набором этих кодов.

Каждый вид EDC/ECC имеет свой предел способности обнаруживать и исправлять ошибки, за которым опять начинаются необнаруженные ошибки и искажения переносимой информации. Увеличение объема EDC/ECC относительно объема исходной информации в общем случае повышает обнаруживающую и корректирующую способность этих кодов.

В качестве EDC популярен циклический избыточный код CRC (Cyclic Redundancy Check), суть которого состоит в сложном перемешивании исходной информации в блоке и формированию коротких двоичных слов, разряды которых находятся в сильной перекрестной зависимости от каждого бита блока. Изменение даже одного бита в блоке вызывает значительное изменение вычисленного по нему CRC, и вероятность такого искажения битов, при котором CRC не изменится, исчезающе мала даже при коротких (единицы процентов от длины блока) словах CRC. В качестве ECC используются коды Хэмминга (Hamming) и Рида-Соломона (Reed-Solomon), которые также включают в себя и функции EDC.

Информационная избыточность несущего цифрового сигнала приводит к значительному (на порядок и более) расширению полосы частот, требуемой для его успешной передачи, по сравнению с передачей исходного сигнала в аналоговой форме. Кроме собственно информационной избыточности, к расширению полосы приводит необходимость сохранения достаточно крутых фронтов цифровых импульсов.

Кроме целей помехозащиты, информация в цифровом сигнале может быть подвергнута также линейному или канальному кодированию, задача которого - оптимизировать электрические параметры сигнала (полосу частот, постоянную составляющую, минимальное и максимальное количество нулевых/единичных импульсов в серии и т.п.) под характеристики реального канала передачи или записи сигнала.

Полученный несущий сигнал, в свою очередь, также является обычным электрическим сигналом, и к нему применимы любые операции с такими сигналами - передача по кабелю, усиление, фильтрование, модуляция, запись на магнитный, оптический или другой носитель и т.п. Единственным ограничением является сохранение информационного содержимого - так, чтобы при последующем анализе можно было однозначно выделить и декодировать переносимую информацию, а из нее - исходный сигнал.

 

 

 

  1. Способы представления звука в цифровом виде.

 

 

Исходная форма звукового сигнала - непрерывное изменение амплитуды во времени - представляется в цифровой форме с помощью "перекрестной дискретизации" - по времени и по уровню.

Согласно теореме Котельникова, любой непрерывный процесс с ограниченным спектром может быть полностью описан дискретной последовательностью его мгновенных значений, следующих с частотой, как минимум вдвое превышающей частоту наивысшей гармоники процесса; частота Fd выборки мгновенных значений (отсчетов) называется частотой дискретизации.

Из теоремы следует, что сигнал с частотой Fa может быть успешно дискретизирован по времени на частоте 2Fa только в том с

Похожие работы

1 2 3 4 5 > >>