Аналогія: теорема Піфагора на площині і в просторі

Піфагор Самосський (бл. 580-500 р.р. до н. е.) - давньогрецький математик і філософ. Народився на острові Самос в багатій купецькій

Аналогія: теорема Піфагора на площині і в просторі

Дипломная работа

Математика и статистика

Другие дипломы по предмету

Математика и статистика

Сдать работу со 100% гаранией
, була тісно повязана з культом. Цілком ймовірно, що теорема про квадрат гіпотенузи була відома в Індії близько 8 ст. до н.е.

Властивості трикутника з сторонами 3, 4, 5 були відомі в Китаї за 1100 р. до н. е., про що засвідчує математична книга Чупей.

Теорема Піфагора має різні формулювання. В "Початках" Евкліда вона формулюється так: У прямокутному трикутнику квадрат сторони, натягнутої над кутом, дорівнює квадратам на сторонах, що утворюють прямий кут.

Латинський переклад арабського тексту: У всякому прямокутному трикутнику квадрат, утворений на стороні, натягнутій над прямим кутом, дорівнює сумі двох квадратів, утворених на двох сторонах, що замикають прямий кут.

У перекладі з німецького читається так: Площа квадрата, виміряна довгою стороною трикутника, настільки ж велика, як у двох квадратів, які виміряні двома сторонами його, що прилягають до прямого кута. У першому російському перекладі евклідових "Початків", зроблено з грецької Ф.І. Петрушевським у 1819 році, теорема Піфагора викладена так: У прямокутних трикутниках квадрат із сторони, протилежної прямому куту, дорівнює сумі квадратів із сторін, що містять прямий кут.

У Франції і деяких областях Німеччини теорему Піфагора називали "мостом ослів". Вважають, що вона формулювалась так: Квадрат, побудований на гіпотенузі прямокутного трикутника, рівновеликий сумі квадратів, побудованих на його катетах.

В епоху середньовіччя теорема Піфагора визначала границі математичних знань. Характерне креслення теореми Піфагора використовувалось як символ математики, перетворювалось школярами в карикатури.

Нині всі погоджуються з тим, що ця теорема не була відкрита Піфагором. Однак, одні вважають, що Піфагор першим дав її повноцінне доведення, інші відомляють йому в цій заслузі. Дехто приписує йому доведення, яке Евклід (жив близько 300 р. до н.е. в Олександрії) наводить у першій книзі своїх "Початків". Проте Прокл, який жив у 410 - 485 р. р. у Візантії і Афінах, стверджує, що доведення в "Початках" належать самому Евкліду. Відомий голандський математик Ван-дер-Варден прийшов до висновку: "Заслугою перших грецьких математиків, таких, як Фалес, Піфагор і піфагорійці, є не відкриття математики, а її систематизація і обґрунтування. В їх руках обчислювальні рецепти перетворились в точну науку".

 

1.4Розвязування задач

 

Задача 1

Основа трикутника дорівнює 40 см. До неї проведені висота довжиною 12 см і медіана довжиною см. Обчислити периметр трикутника.

Розвязання

Нехай у трикутнику АВС, АВ=40см, висота СН=12 см, медіана СМ= см(рис.1)

З трикутника МНС(Н=90о):

 

МН===15(см).

 

Крім того, точка Н лежить між точками М і В. Оскільки

 

МВ = =20(см), то

НВ=МВ-МН=5(см) і АН=АВ-НВ=35(см).

З СНВ(Н=90о): СВ===13(см).

З СНА(Н=90о): СВ===37(см).

Отже Р=АВ+ВС+АС=40+13+37=90(см.)

 

Рис. 1

Рис. 2

 

Задача2

Периметр ромба дорівнює 100 см, а діагоналі відносяться як 3:4. Обчислити площу ромба.

Розвязання

Нехай АВСD - ромб, у якому ВD:АС=3:4 і Р=100(см) (рис.2)

Оскільки Р=4*АD, то АD=25 см. Враховуючи, що

 

ВD=2*ОD, АС=2*АО,

 

Одержимо

 

,

 

звідки

 

ОD=3k, AO=4k(k>0).

З AOD(O=90o): AD2=AO2+OD2, 25=16k2+9k2.

Тоді OD=3*5=15 (см),

АО=4*5=20(см),

SABCD=4*SAOD=4**AO*OD=2*20*15=600(см2).

 

Задача3 (задача Леонардо Фібоначчі)

Дві башти висотою 30 і 40 футів розташовані одна проти другої на відстані 50 футів одна від одної. Між ними знаходиться фонтан, до якого з обох башт злітають два птахи, і , пролітаючи з однаковою швидкістю, прилітають до фонтану в один і той же час. Яка відстань по горизонталі відділяє фонтан від обох башт(рис.3)?

Розвязання

Позначимо АЕ=х, тоді DЕ=50-х. З прямокутних трикутників ВАЕ і СDЕ за теоремою Піфагора маємо : ВЕ2=АЕ2+АВ2, СЕ2=DЕ2+DС2.За умовою ВЕ=ЕС, тоді маємо АЕ2+АВ2= DЕ2+DС2, х2+402=(50-х)2+302, х2+1600=2500-100х+х2+900, 100х=1800, х=18, DЕ=50-18=32. Отже, АЕ=18 футів, DЕ=32 фути.

Рис. 3

Рис.4.1

Задача 4

Обчислити довжину висоти трикутника, якщо відомо довжини його сторін.

Розв'язання

Нехай ΔАВС, АВ = с, АС = ,ВС = а, АН- висота.Позначимо проекцію сторони АВ на пряму ВС через Тоді проекція сторони АС на що саму пряму буде або а - х (рис. 4.1), або а + х (рис4.2). За теоремою Піфагора в першому випадку

 

 

Дістанемо рівняння

 

 

Розвязуючи його, одержимо:

 

 

Тоді

 

 

У другому випадку відповідь буде та сама

 

Рис. 4.2

Рис. 5

 

Задача 5

На сторонах рівнобедреного прямокутного трикутника з катетом побудовані квадрати зовні трикутника. Центри цих квадратів з'єднані між собою прямими лініями. Знайти площу одержаного трикутника.

Розв'язання

Нехай

 

ΔАВС, C = 90°, АС = ВС = b,

 

ABMN,ACDF, BCKL - квадрати

 

 

Неважко переконатись в тому, що ΔO1O2O3 - рівнобедрений, O1C - висота (рис.5).

Тоді.

За теоремою Піфагора

 

 

Таким чином,

 

Розділ 2. Теорема Піфагора у просторі або стереометричний аналог теореми Піфагора

 

Метод аналогії є одним з ефективних і розповсюджених методів математики. Його застосування приводить до плідних і часто до неочікуваних результатів.

Деякі властивості трикутника і тетраедра схожі, а деякі геометричні поняття, повязані з трикутником , мають просторові аналоги: наприклад, сторона трикутника - грань тетраедра, довжина сторони - площа грані, вписане коло - вписана сфера, площа - обєм,бісектриса кута - бісектор двогранного кута тощо. Багато теорем про трикутники, якщо замінити в їх формулюванні планіметричні терміни відповідними стереометричними і конкретно сформулювати, то вони перетворюються в теореми про тетраедри. Однією з таких є аналог теореми Піфагора в стереометрії.

Означення. Якщо три ребра, які виходять з однієї вершини тетраедра, попарно ортогональні, то тригранний кут, що визначається ними, називається прямим, а тетраедр - прямокутним.

Теорема (стереометричний аналог теореми Піфагора).У прямокутному тетраедрі квадрат площі грані, що лежить проти прямого тригранного кута, дорівнює сумі квадратів площ решти граней.

Доведення 1. Нехай у прямокутному тетраедрі OABC

 

(Рис.2.1)

 

Доведемо, що

 

 

Маємо:

 

(1)

 

У Δ АВС:

 

, (2)

 

Площу трикутника АВС обчислимо за формою Герона

 

, де

 

Виконаємо перетворення:

 

,

.

 

Використовуючи (2), (3), одержимо:

 

тобто (4)

 

Враховуючи (1), (4), одержимо

 

 

 

Розглянемо доведення, в якому використовується метод проекцій

Доведення 2

Нехай у прямокутному тетраедрі ОАВС грані ОВС, ОАС, ОАВ утворюють з основою АВС кути відповідно. Оскільки точка О проектується в ортоцентр Н трикутника АВС, то лінійні кути двогранних кутів при основі утворюватимуться висотами відповідних граней: (Рис. 2.2 ).Спроектуємо висоту ОН на ребра прямого тригранного кута, одержимо: ОА1=ОН (Рис. 2.3), аналогічно ОВ1=ОН, OC1=OH.

У прямокутному паралелепіпеді з діагоналлю ОН і ребрами ОА1, ОВ1, ОС1 справджується рівність

 

або ,

звідки (1)

 

Оскільки то ΔAOB - ортогональна проекція ΔАВС, аналогічно ΔAOC - ортогональна проекція ΔАВС і ΔBOС - ортогональна проекція ΔАВС.

Маємо:

 

,

звідси . (2)

 

Враховуючи (1) і (2), одержимо:

 

, або .

 

Пропонуємо інші доведення теореми Піфагора для прямокутного тетраедра.

Доведення 3

Нехай у прямокутному тетраедрі ОАВС

 

, (Рис. 2.4).

 

Побудуємо висоту СН трикутника АВС і сполучимо точки О і Н.

Маємо: СН - похила, ОН - її проекція, СНАВ. За теоремою про три перпендикуляри ОНАВ. Знайдемо площу трикутника АВС:

 

З ΔСОН (О = 90° ) (2)

 

Знайдемо ОН, для цього виразимо площу трикутника АОВ через катети, тобто

 

(3),

теорема піфагор площина простір

і через гіпотенузу АВ та висоту ОН, опущену на неї, тобто

 

або (4)

 

З рівностей (3), (4)

 

,

звідки . (5)

 

Враховуючи ( 2 ), ( 5 ), одержимо:

 

(6)

 

Спосіб 1. Враховуючи ( 1 ), ( 6 ) одержимо:

 

 

Тоді

 

.

 

Спосіб 2. Можна використати формулу проекцій

 

 

Оскільки

 

і

,

то ,

звідки

аб

Похожие работы

<< < 1 2 3 4 >