Подтверждение соответствия тяжелого товарного бетона класса В15

Оплата работ по подтверждению соответствия тяжелого товарного бетона класса В15 включает в себя все фактически произведенные работы по подтверждению соответствия,

Подтверждение соответствия тяжелого товарного бетона класса В15

Дипломная работа

Строительство

Другие дипломы по предмету

Строительство

Сдать работу со 100% гаранией

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РЕСПУБЛИКИ КАЗАХСТАН

Восточно-Казахстанский государственный технический университет

им. Д. Серикбаева

Кафедра «Строительные материалы, стандартизация и сертификация»

 

 

 

 

 

 

 

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к дипломному проекту

Тема:

Подтверждение соответствия тяжелого товарного бетона класса В15

 

 

 

 

 

 

 

 

 

 

 

 

Усть-Каменогорск, 2007

Введение

 

Проблема качества актуальна для всех стран, независимо от зрелости их рыночной экономики. Сертификацию считают одним из важнейших механизмов гарантии качества, безопасности и конкурентоспособности продукции, соответствующих требованиям стандартов предполагаемых рынков сбыта и удовлетворяющих требованиям потребителей.

Современные формы подтверждения соответствия обеспечивают:

гарантию качества продукции путем предотвращения попадания на рынок продукции, не соответствующей требованиям нормативных документов;

доверие к качеству экспортируемой продукции;

- защиту изготовителя от конкуренции с поставщиками не сертифицированной продукции;

расширение рекламных возможностей поставщика;

стабильное качество конечной продукции при условии применения сертифицированных комплектующих изделий и материалов.

В условиях неуклонно увеличивающегося объема строительства, согласно Посланию Президента Республики Казахстан, возросло применение бетона и железобетона. Современное строительство немыслимо без бетона. 2 млрд. м3 в год таков сегодня мировой объем его применения. Это один из самых массовых строительных материалов, во многом определяющий уровень цивилизации. Вместе с тем, бетон самый сложный искусственный композиционный материал, который может обладать совершенно уникальными свойствами. Он применяется в самых разных эксплуатационных условиях, гармонично сочетается с окружающей средой, имеет неограниченную сырьевую базу и сравнительно низкую стоимость. К этому следует добавить высокую архитектурно - строительную выразительность, сравнительную простоту и доступность технологии, возможность широкого использования местного сырья и утилизации техногенных отходов при его изготовлении, малую энергоемкость, экологическую безопасность и эксплуатационную надежность. Именно поэтому бетон, остается основным конструкционным материалом и в обозримом будущем.

В последние годы появились и получили широкое распространение новые эффективные вяжущие, модификаторы для вяжущих и бетонов, активные минеральные добавки и наполнители, армирующие волокна, новые технологические приемы и методы получения строительных композитов. На рубеже столетия существенно обогатились наши представления о структуре и свойствах бетона, появилась возможность прогнозирования свойств и активного управления характеристиками материала, успешно развивается компьютерное проектирование бетона и автоматизированное управление техноло-гическими процессами.

Все это позволило не только создать и освоить производство новых видов бетона, но и значительно расширить номенклатуру применяемых в строительстве материалов: от суперлегких теплоизоляционных (с плотностью менее 100кг/м3) до высокопрочных конструкционных (с прочностью на сжатие около 200 МПа). Сегодня в строительстве применяются более тысячи различных видов бетона, и процесс создания новых бетонов интенсивно продолжается. Бетон широко используется в жилищном, промышленном, транспортном, гидротехническом, энергетическом и других видах строительства.

Технология и практика применения бетона получат дальнейшее развитие, сохранив за ним ведущее положение среди строительных материалов. Бетон, являясь наиболее ярким представителем материалов строительных композитов гидратационного твердения, проектируемых на единой материаловедческой основе, дает новый импульс для создания гибридных, слоистых, тонкостенных, профильных и других видов строительных конструкций нового поколения.

Теоретическими предпосылками синтеза прочности и долговечности высококачес-твенных строительных композитов является более полное использование энергии портланд-цемента или другого гидравлического вяжущего, создание оптимальной микроструктуры цементного камня, уменьшение микропористости и повышение трещиностойкости, упрочнение контактных зон цементного камня и заполнителя за счет направленного применения комплекса эффективных химических модификаторов, высокодисперсных силикатных материалов с аномальной гидравлической активностью, расширяющих добавок с регулируемой энергией напряжения, а также интенсивной технологией производства.

Целью настоящего проекта является подтверждение соответствия тяжелого товарного бетона класса В15. Данный проект состоит из пяти разделов, включающих строительный, технологический, сертификационный, безопасность и экологичность проекта и экономический.

 

1. Строительный раздел

 

1.1 Общие указания

 

Проект выполнен для площадки со следующими природными условиями: -расчетная зимняя температура -39 С°;

-нормативная снеговая нагрузка 150 кг/м2;

-скоростной напор ветра 38 кг/м;

-сейсмичность района 6 баллов.

Класс ответственности - II СНиП [27]

За относительную отметку 0.000 принят уровень чистого пола первого этажа здания.

 

1.1.1 Объемно-планировочные решения Здание жилого дома - кирпичное с поперечными несущими стенами

Высота этажа - 3,3 м, высота помещений - 3,0 м.

Степень огнестойкости здания - II.

Жилые комнаты и кухня имеют естественное освещение. В доме предусмотрены хозяйственно-шитьевое и горячее водоснабжение, а также канализация, водостоки, отопление, электроосвещение, телефонизация и звуковая сигнализация. В подвальном помещении расположен гараж.

Площадь помещений приведена в таблице 1.1.

 

Таблица 1.1 Площадь помещений

Наименование помещенийПлощадь,мКоридор23,5Прихожая31,07Кухня31,74Столовая14,97Спальня19,16Спальня15,09Общая комната48Гостинная53Баня65Гараж на 2 автомобиля113,4

1.1.2 Конструктивные решения

Фундамент - ленточный монолитный из тяжелого бетона класса В15. Основанием фундаментов служат глины с Ro = 5,30 кгс/см. Подземные воды вскрыты выработками глубиной 4.20 м.

Стены подвала - из монолитного бетона.

Стены - из красного кирпича по ГОСТ 530-95* на цементно-песчаном растворе с армированием с облицовочным слоем из силикатного кирпича по ГОСТ.

Наружные стены утепляют плитами теплоизоляционными URSA ГТЗОГ толщиной

80 мм, с последующей обшивкой гипсокартоном.

Перегородки - кирпичные с армированием, гипсокартонные по металлическому каркасу.

Плиты перекрытия - сборные железобетонные пустотные.

Крыша - чердачная, кровля двускатная с наружным водоотводом.

Лестницы - деревянные.

Перемычки - сборные железобетонные.

Утеплитель покрытия - мин.плита Y = 200 кг/м3 ГОСТ 9573-96.

Окна - деревянные с тройным остеклением.

Двери - деревянные.

Стены оштукатуривают цементно-песчаным раствором, побелка,

покраска; стены квартир - подготовка к покраске.

Потолки - побелка.

Столярные изделия окрашивают эмалью в 2 слоя.

1.1.3 Противопожарные мероприятия

Здание относится ко II степени огнестойкости.

Противопожарные мероприятия назначены согласно СНиП РК [35], СНиП РК [36].

 

1.1.4 Строительная теплотехника

Зона влажности сухая.

Требуемое сопротивление теплопередаче ограждающих конструкций, определяется по формуле:

 

(1.1)

 

где: n - коэффициент, принимаемый в зависимости от положения наружной поверхности ограждающих конструкций по отношению к наружному воздуху;

tB - расчетная температура внутреннего воздуха;

1н - расчетная зимняя температура наружного воздуха, равная средней температуре наиболее холодной пятидневки обеспеченностью 0.92 по СНиП РК [32];

DtH - нормативный температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции;

ан - коэффициент теплоотдачи внутренней поверхности ограждающих конструкций.

1.1.4.1 Наружная стена

Глиняный кирпич М 75.

Раствор глиняно-песчанный М 25.

 

(1.2)

Тепловая инерция ограждающей конструкции определяется по

формуле:

 

(1.3)

 

R-термические сопротивления отдельных слоев ограждающей конструкции; S- расчетные коэффициенты теплоусвоения материала отдельных слоев ограждающей конструкции.

 

(1.4)

 

S- расчетные коэффициенты теплоусвоения материала отдельных слоев ограждающей конструкции.

 

 

D>7 берем расчетную зимнюю температуру наружного воздуха, равную средней температуре наиболее холодной пятидневки обеспеченностью 0.92 по СНиП РК[32].

Сопротивление теплопередаче ограждающей конструкции определяется по формуле:

 

Принимают толщину кирпичной стены равной 640 мм.

1.1.4.2 Покрытие

Один слой рубероида. Два слоя рубероида. Цементно-песчанная стяжка.

Утеплитель - минераловатные плиты. Железобетонная многопустотная плита. RoTp=1.18

Тепловая инерция ограждающей конструкции определяется по формуле:

 

(1.5)

 

где: R-термические сопротивления отдельных слоев ограждающей конструкции.

 

2. Технология производства тяжелого товарного бетон

Лучшие

Похожие работы

1 2 3 4 5 > >>