АНАЛИЗ ТЕХНОЛОГИИ ИЗГОТОВЛЕНИЯ МОДУЛЯ СОПРЯЖЕНИЯ ЦИФРОВОГО МУЛЬТИМЕТРА С КОМПЬЮТЕРОМ
1 Технологическая характеристика модуля сопряжения как объекта автоматизированной сборки и монтажа
Модуль сопряжения цифрового мультиметра с компьютером удовлетворяет следующим требованиям:
- радиоэлектронный модуль является функционально законченным и его изготовление, а также электрический контроль, можно организовать на специализированном участке;
- все электрорадиоэлементы со штырьковыми выводами располагаются на печатной плате только с одной стороны для обеспечения возможности применения групповой пайки окунанием платы;
- число вариантов формовки выводов электрорадиоэлементов ограниченно: для элементов с цилиндрическими корпусами и осевыми выводами применяется П-образная формовка и установка на печатной плате без зазора, для конденсаторов и транзисторов применяется I-образная формовка, для элементов в корпусах DIP типа формовка не производится;
- конструкция модуля исключает применение прокладок между элементами и печатной платой, экранов и изоляционных трубок на корпусах и выводах элементов;
- конструкция модуля исключает применение дополнительных креплений элементов на печатную плату.
2 Технологическая характеристика модуля сопряжения как объекта автоматизированной сборки и монтажа
Типовой технологический процесс разрабатывается для изготовления в конкретных производственных условиях типового представителя группы изделий, обладающих общими конструктивно-технологическими признаками. К типовому представителю группы изделий относятся изделие, обработка которого требует наибольшего количества основных и вспомогательных операций, характерных для изделий, входящих в эту группу. Типовой технологический процесс может применяться как рабочий технологический процесс или как информационная основа при разработке рабочего технологического процесса. Он уменьшает объём технологической документации без ущерба содержащейся в ней информации, создаёт возможность разработки групповых приспособлений и средств автоматизации, исключает грубых ошибок в нормировании материальных и трудовых затрат.
При разработке рабочего технологического процесса использован типовой технологический процесс, который состоит из следующей последовательности действий:
а) входной контроль электрорадиоэлементов;
б) лужение печатной платы;
в) промывка;
г) подготовка электрорадиоэлементов к монтажу;
д) установка элементов на плату;
е) флюсование;
ж) пайка узла;
з) контроль пайки;
и) ручная допайка;
к) промывка;
л) доустановка элементов на плату;
м) ручная допайка;
н) контроль функционирования.
1 - входной контроль электрорадиоэлементов; 2 - лужение печатной платы; 3 - промывка; 4 - подготовка элементов к монтажу; 5 - установка элементов на плату; 6- флюсование; 7 - пайка узла; 8 - контроль пайки; 9 - ручная допайка; 10 - промывка; 11 - доустановка элементов на плату; 12 - ручная допайка; 13 - контроль функционирования.
Рисунок 1.1 - Схема типового технологического процесса
3 Расчет показателей технологичности конструкции
Отраслевой стандарт ОСТ 4 ГО.091.219 предусматривает выбор состава базовых показателей. В число выбираемых должны включаться показатели, оказывающие наибольшее влияние на технологичность конструкции блоков.
Основным показателем, служащим для оценки технологичности конструкции, является комплексный показатель технологичности , определяемый с помощью базовых показателей по формуле (1.1)
, (1.1)
где: - значение базового показателя;
- функция, нормирующая весовую значимость показателя;
- порядковый номер показателя;
- общее количество относительных частных показателей.
В качестве базовых показателей технологичности выбираем показатели, приведенные в таблице 1.1.
Таблица 1.1 - Базовые показатели технологичности
Порядковый номер в ранжировочной последовательностиКоэффициентОбозначение1Использования микросхем и микросборок в блоке1,0002Автоматизации и механизации монтажа1,0003Механизации подготовки ЭРЭ0,7504Механизации контроля и настройки0,5005Повторяемости ЭРЭ0,3106Применяемости ЭРЭ0,1877Прогрессивности формообразования деталей0,110
Для расчета комплексного показателя технологичности необходимо определить базовые показатели приведенные в таблице 5.1.
Коэффициент использования микросхем и микросборок вычисляется по формуле (1.2):
, (1.2)
где: - общее количество микросхем и микросборок в изделии, шт;
- общее количество электрорадиоэлементов, шт.
Подставив значения в формулу (1.2) получаем:
Коэффициент автоматизации и механизации монтажа рассчитывается по формуле (1.3):
, (1.3)
где: - количество монтажных соединений, которые могут осуществляться автоматизированным или механизированным способом;
- общее количество монтажных соединений.
Рассчитаем коэффициент автоматизации и механизации монтажа:
.
Коэффициент механизации подготовки электрорадиоэлементов вычисляем по формуле (5.4):
, (1.4)
где: - количество электрорадиоэлементов, шт., подготовка которых к монтажу может осуществляться механизированным или автоматизированным способом.
Подставив значения в формулу (1.4) получаем:
.
Коэффициент механизации контроля и настройки вычисляем по формуле(1.5):
, (1.5)
где: - количество операций контроля и настройки, которые можно осуществлять механизированным или автоматизированным способом;
- общее количество операций контроля и настройки.
Вычислим коэффициент механизации контроля и настройки по формуле(1.5):
.
Коэффициент повторяемости электрорадиоэлементов рассчитываем по формуле (1.6):
, (1.6)
где: - общее количество электрорадиоэлементов, шт;
- общее количество типоразмеров электрорадиоэлементов в изделии.
Подставив значения в формулу (5.6) получаем:
.
Коэффициент применяемости электрорадиоэлементов рассчитываем по формуле (1.7):
, (1.7)
где: - количество типоразмеров оригинальных электрорадиоэлементов в изделии.
Подставляя значения в формулу (1.7) получаем:
.
Коэффициент прогрессивности формообразования деталей вычисляется по формуле (1.8):
, (1.8)
где: - количество деталей, шт., заготовки которых или сами детали получены прогрессивными методами (штамповкой, прессованием, литьем, пайкой, сваркой, склеиванием и др);
- общее количество деталей в изделии, шт.
После подстановки значений в формулу (5.8) получаем:
.
Подставляя значения рассчитанных базовых показателей технологичности в формулу (1.1) получаем:
Уровень технологичности конструкции блока определяется как отношение достигнутого показателя технологичности к значению базового по формуле (1.9):
, (1.9)
где:КБ - базовый показатель технологичности.
.
В соответствии с ОСТ 4 ГО.091.219 полученный нормативный комплексный показатель технологичности подходит для установочной серии.
4 Выбор оборудования для производства модуля и расчет технико-экономических показателей поточной линии сборки
Для выбора оборудования для производства воспользуемся данными, приведенными в [7].
Для производства:
- распаковка электрорадиоэлементов производится вручную на светомонтажном столе СМ-2 - производительность 1000 шт/час;
- входной контроль осуществляется тестером CMS100 - производительность 360 шт/час;
- автомат формовки, обрезки и лужения выводов резисторов, диодов, транзисторов и конденсаторов УФТ 901 - производительность 800 шт/час;
- установка электрорадиоэлементов производится на светомонтажном столе Тройник-М - число ячеек: для микросхем - 3, для электрорадиоэлементов - 10;
- пайка осуществляется окунанием платы в ванну с припоем на установке ТН 712, производительность 360 шт/час;
- очистка производится на установке УПИ 901, производительность 60 шт/час;
- функциональный контроль осуществляется устройством Линза-11, производительность 80 шт/час.
Рассчитаем такт выпуска каждого модуля, трудоемкость выполнения каждой операции, коэффициент загрузки оборудования.
Программу запуска изделия вычисляем по формуле (1.10):
, (1.10)
где: - программа выпуска изделий, шт.;
- коэффициент технологических потерь, принимается равным 1,02.
Подставляя значения в формулу (1.10) получаем:
Такт выпуска одного модуля определяем по формуле (1.11):
, (1.11)
где: - годовой фонд времени, ч;
- программа запуска изделий, шт.
Годовой фонд времени вычисляем исходя из следующих данных: количество рабочих дней в году - 250, рабочие работают в одну смену, продолжительность рабочего дня - 8 часов с 1 часом перерыва на обед. Следовательно годовой фонд времени составляет 1750 часов. Подставляя значения в формулу (1.11) получаем:
Трудоемкость операции сборки автомата определяется по формуле (1.12):
<