Анализ работы плоского рычажного механизма

  Артоболевский И.И. Теория механизмов и машин. - М.: Наука, 1988. - 640 с. Евстратов Н.Д. Курс лекций по механике. Часть I,

Анализ работы плоского рычажного механизма

Курсовой проект

Компьютеры, программирование

Другие курсовые по предмету

Компьютеры, программирование

Сдать работу со 100% гаранией

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ РАДИОЭЛЕКТРОНИКИ

Кафедра инженерной и компьютерной графики

 

 

 

 

 

 

 

 

 

 

КУРСОВАЯ РАБОТА

Пояснительная записка

Тема работы: "Анализ работы плоского рычажного механизма"

 

 

 

Руководитель роботы: Выполнил:

ст. группы БТМАС - 03 - 1

Евстратов Н.Д.

 

 

 

Харьков 2009

 

Содержание

 

Введение

Исходные данные

1.Динамический анализ механизма

1.1Структурный анализ механизма

1.1.1Структурная схема механизма

1.1.2Перечень звеньев механизма

1.1.3Определение степени подвижности механизма

1.2Кинематический анализ механизма

1.2.1 Определение скоростей точек и звеньев механизма

1.2.2 Определение ускорений точек и звеньев механизма

1.3Силовой анализ механизма

1.3.1Расчет сил и главных моментов инерции звеньев механизма

1.3.2Определение реакций в кинематических парах

2. Проектный расчет на прочность

2.1 Выбор расчетной схемы

2.2 Построение эпюр

2.2.1 Построение эпюры Эп Nz

2.2.2 Построение эпюры Эп Qy

2.2.3 Построение эпюры Эп Mx

2.3 Подбор материала и сечений

3. Выводы

4. Список литературы

 

Введение

 

Целью выполнения данной курсовой работы является закрепление теоретических сведений, полученных при изучении курса "Механика", приобретение конструкторских навыков при проектировании рычажных механизмов.

Для определения конструктивных размеров и расчета элементов кинематических пар на прочность необходимо вычислить силы, действующие на каждое звено и структурную группу.

Целью динамического анализа является:

  1. определение сил и моментов, действующих на звенья механизма, кинематические пары и неподвижные опоры. И выявление способов уменьшения динамических нагрузок, возникающих во время действия механизма;
  2. изучение режимов движения механизма под действием заданных сил и выявления способов, обеспечивающих заданные режимы движения.

Целью расчета звеньев механизма на прочность является оценка прочности элементов механизма с дальнейшим подбором оптимальных размеров сечений звеньев и предложением материала для их изготовления.

 

Исходные данные

 

Схема № 5

Вариант № 5

Положение механизма № 3

 

№ПараметрыЗначение1.Частота вращения n, об/м8502.lAB, мм343.lAС, мм904.lEF, мм1105.lCD, мм606.lAE, мм607.Центры тяжести S1, S2, S3, S4, S5 расположены посередине соответствующих звеньев8.Расcтояние а, мм409.Расстояние b, мм7510.Расcтояние c, мм8011.Вес ползуна, Н1812.Момент инерции звена J = ml2 / 1213.Наибольшая сила сопротивления P, кH30014.Масса звеньев m=ql, q=0.1 кг/м

1.ДИНАМИЧЕСКИЙ АНАЛИЗ МЕХАНИЗМА

 

1.1СТРУКТУРНЫЙ АНАЛИЗ МЕХАНИЗМА

 

1.1.1 СТРУКТУРНАЯ СХЕМА МЕХАНИЗМА

 

Рисунок 1.1. - Кинематическая схема механизма

 

Для изучения движения механизма необходимо знать его структуру: количество звеньев, количество и классы кинематических пар. Необходимыми также являются знания о взаимном расположении звеньев. Поэтому первым этапом кинематического анализа является построение кинематической схемы механизма. В данной курсовой работе рассмотрен механизм схемы № 5. Её построение выполнено в масштабе μl = 0,001 м.

Определить характер движения звеньев механизма можно с помощью плана положений. Построения плана начинается с черчения неподвижных опор B и D. Дальше строится траектория движения ведущего звена АВ (окружность) и на ней отмечаются двенадцать положений звена АС через каждые 300 , начиная с того положения, которое соответствует самому верхнему положению ползуна, которое мы и принимаем за нулевое. По условию необходимо рассмотреть данный механизм в положении № 3. Кинематическая схема механизма приведена в заданном положении на рисунке 1.1.

 

1.1.2 ПЕРЕЧИСЛЕНИЕ ЗВЕНЬЕВ МЕХАНИЗМА

Рассмотрев характер движения, в механизме можно выделить следующие звенья:

1.- кривошип;

2. - шатун;

3. - коромысло;

  1. - кривошип;
  2. - ползун;
  3. - стойка;
  4. - стойка;

Звенья механизма соединены кинематическими парами:

1-2 - кинематическая пара 5-го класса, вращательная;

2-3 - кинематическая пара 5-го класса, вращательная;

2-4 - кинематическая пара 5-го класса, вращательная;

3-5 - кинематическая пара 5-го класса, вращательная;

6-1 - кинематическая пара 5-го класса, вращательная;

7-4 - кинематическая пара 5-го класса, вращательная;

3-5 - кинематическая пара 5-го класса, поступательная.

 

1.1.3 ОПРЕДЕЛЕНИЕ СТЕПЕНИ ПОДВИЖНОСТИ МЕХАНИЗМА

Разбиваем механизм на группы Ассура. Это показано на рисунке 1.2. Степень подвижности механизма определяем по уравнению Чебышева:

 

W = 3n - 2p5 - p4 (1.1.1),

где n - количество подвижных звеньев механизма;

p5, p4 - количество кинематических пар 4-го и 5-го класса.

Для данного механизма количество подвижных звеньев n = 5, кинематических пар 5-го класса p5 = 7; кинематические пары 4-го класса отсутствуют p4 = 0.

 

W = 3·5 - 2·7 = 1

 

Так как степень подвижности механизма равна 1, то для работы данного механизма необходимо одно ведущее звено.

 

Рисунок 1.2. - Структурные группы механизма

 

1.2 Кинематический анализ механизма

 

1.2.1 Определение скоростей точек и звеньев механизма

Для определения скоростей точек и звеньев заданного механизма воспользуемся методом планов скоростей.

Планом скоростей называется диаграмма, на которой изображены векторы скоростей точек плоского механизма.

Определим угловую скорость w ведущего звена АВ по формуле:

 

w = 2π · n /60 = 2 · 3,14 · 850 / 60 = 89 c-1 (1.2.1),

 

где n - частота вращения.

 

Построение планов скоростей начинаем со скорости точки А ведущего звена АB. Учитывая, что угловая скорость ведущего звена w известна, скорость точки А определим из уравнения :

 

VА = wAB × lAB = 89 × 0,034 = 3,026 м/ c-1 (1.2.2),

 

где lAB - длина звена АB м.

 

На плоскости черчения определяем полюс Pv, в котором будут находится точки B и D - неподвижные опоры данного механизма. Из полюса проводим вектор а в общем случае произвольной длины, а для конкретно данной задачи а = 151,3 мм, который отвечает скорости VА, в направлении перпендикулярном положению звена АВ вдоль wAB. Вычислим масштабный коэффициент µv по формуле:

 

µv = VА / Pva = 3,026 : 151,3 = 0,02 м/ мм×с (1.2.3),

 

где VА - скорость точки А м/с;

Pva- длина вектора на плане скоростей мм.

 

Для определения скорости точки C воспользуемся условием её принадлежности звену - АС и DC.Скорость точки С определяется из системы векторных уравнений:

 

Вектор скорости точки В будет результатом общего решения двух векторных уравнений . В уравнении (1.2.4) первая составляющая VA известна по направлению, а про скорость VCA известно лишь то, что она перпендикулярна звену СА. Потому для дальнейшего построения рядом с точкой а проводится линия, которая перпендикулярна AC.

Абсолютное значение скорости VC определяется из уравнения:

 

VC = Pvс · µv = 152 · 0,02 = 3,04 м/с (1.2.6),

 

где Pvс - длина вектора мм.

 

Соединим на плане скоростей векторы a и с. Этот вектор и является вектором ас, который соответствует звену АС на плане механизма. Т.к. точка Е принадлежит вектору АС, а соответственно и вектору ас на плане скоростей, то для нахождения ее положения на векторе ас будет справедливо:

 

lАС / lЕС = ас / ес (1.2.7),

ес = 30 · 12 / 90 = 4 мм .

 

где lЕС - длина звена ЕС;

ес - длина вектора на плане скоростей.

Длина вектора, что соединяет полюс с точкой е, соответствует скорости Ve, численное значение которой равно:

 

Ve = Pvе · µv = 152,5 · 0,02 = 3,05 м/с (1.2.8)

Для определения скорости точки F воспользуемся условием её принадлежности точке Е. Скорость точки F определяется из уравнения:

 

VF=VE+VFE (1.2.9)

 

Лучшие

Похожие работы

1 2 3 4 5 > >>