Анализ процессов изготовления детали корпуса

Жидкой штамповкой называют технологический процесс получения заготовок деталей, при котором кристаллизация жидкого металла, залитого в полость инструмента, происходит под высоким

Анализ процессов изготовления детали корпуса

Курсовой проект

Разное

Другие курсовые по предмету

Разное

Сдать работу со 100% гаранией

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНМЮ

ЛИПЕЦКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

 

 

Кафедра технологии машиностроения.

 

 

 

 

 

Курсовая работа

по дисциплине

«Система технологий отраслей»

на тему: «Анализ процессов изготовления детали корпуса 651».

 

 

 

 

 

 

Выполнил

 

 

Принял:

 

 

Липецк 2007

 

Содержание

 

1 Разработка и конструкционно-технический анализ чертежа детали

2 Анализ и расчет характера сопряжений заданных поверхностей

2.1 Пояснение, назначения указанных посадок

2.2 Определение указанных размеров и отклонений

2.3 Определение величин допусков предельных значений, зазоров и натягов

2.4 Построение схем полей допусков

3 Характеристика материала деталей и описание способа его получения

4 Выбор вида заготовки и описание метода и способа ее получения для заданной детали

5 Выбор возможной последовательности механической обработки заданных поверхностей и описание технологий выполнения отдельных операций

Заключение

Библиографический список

 

  1. Разработка и конструкционно-технический анализ чертежа детали

Корпусная деталь, максимальный диаметр которой = 94 мм, минимальный =72 мм. Деталь имеет одно сквозное центральное отверстие диаметром = 42 мм. Данное отверстие имеет паз, ширина которого = 6 мм, длина = 45 мм, глубина = 5мм. Деталь представляет собой тело вращения, состоящее из 3-х дисков, на среднем дисковом утолщении имеется лыска. Шероховатости детали ª√3,2 и в√3,2.

2. Анализ и расчет характера сопряжений заданных поверхностей.

 

2.1 Пояснение, назначения указанных посадок.

 

Посадки U/h «прессовые тяжелые». Характеризуются большими гарантированными натягами (0, 001 ÷ 0,002) d и.с. Предназначены для соединений, на которые воздействуют тяжелые, в том числе и динамические нагрузки. Применяются, как правило, без дополнительного крепления соединяемых деталей. При столь больших натягах возникают в основном упруго-пластические и пластические деформации. Детали должны быть проверены на прочность. Рекомендуется опытная поверка выбранных посадок, особенно в массовом производстве. Сборка обычно осуществляется методами пластических деформаций, но применяются и в продольных запрессовках. В отдельных случаях детали перед сборкой сортируются и подбираются по размерам. Для посадок с большими натягами предусмотрены относительно широкие допуски деталей (8-го, иногда 7-го квалитета). В отдельных случаях с целью получения большей прочности соединений и повышения гарантированного натяга допуск основного отверстия или основного вала может быть ужесточен на один квалитет.

Посадки F/с8 «ходовые». Характеризуются умеренным гарантированным зазором, достаточным для обеспечения свободного вращения в подшипниках скольжения при консистентной и жидкой смазке в легких и средних режимах работы (умеренные скорости до 15 рад/c, нагрузки, небольшие температурные деформации). Применяются и в опорах поступательного перемещения, не требующих столь высокой точности центрирования, как в точных посадках движения или скольжения. В неподвижных соединениях применяются для обеспечения легкой сборки при невысоких требованиях к точности центрирования деталей.

2.2 Определение предельных размеров и отклонений.

 

1) 72h9

dmax = dн + es = 72 + 0 =72

dmin = dн + ei = 72 + (-0,074) = 71,026

Тd = dmax dmin = 72,000 71,026 = 0,973

 

 

2) 42F8

Dmax = Dн + ES = 42 + 0,064 = 42,064

Dmin = Dн + EI = 42 + 0,025 = 42,025

TD = Dmax Dmin = 42,064 42,025 = 0,039

2.3 Определение величин допусков предельных значений, зазоров и натягов.

  1. Ø42 F8

Dmin > dmax зазор, подходит посадка F8/c8

Контрдеталь: Ø42 с8

dmax = 42 + (-0,130) = 41,870

dmin = 42 + (- 0,169) = 41,831

Td = dmax dmin = 41,870 41,831 = 0,039

Smin = Dmin dmax = EI es = 0,025 (-0,130) = 0,155

Smax = Dmax dmin = ES ei = 0,064 (- 0,169) = 0,233

TS = Smax Smin = 0,233 0,155 = 0,078

  1. Ø72 h9

dmin > Dmax натяг, подходит посадка h9/U9

Контрдеталь: Ø72 U9

Dmax = 72 + (-0,087) = 71,923

Dmin = 72 + (-0,161) = 71,839

TD = Dmax Dmin = 71,923 71,839 = 0,084

Nmin = dmin Dmax = EI es = -0,074 + 0,087 = 0,013

Nmax = Dmin dmax = ES ei = 0 + 0,161 = 0,161

TD = Nmax Nmin = 0,161 0,013 = 0,148

 

2.4 Построение схем полей допусков.

1)

 

2)

 

3. Характеристика материала деталей и описание способа его получения.

 

Кислородно-конвнртерный процесс.

Первые цехи кислородноконвертерного передела были построены в 1956-1957 гг. В настоящее время этот способ получил в металлургии очень широкое распространение.

Кислородные конвертеры футерованы основными огнеупорными материалами хромомагнезитом и т.д. Это даёт возможность использовать для ошлакования и удаления из металла серы и фосфора основной флюс известь. Поэтому для выплавки стали используется передельный чугун марок М1, М2, М3, обычно применяемый в мартеновском производстве.

Перед заливкой чугуна в конвертер загружают известь.(4-10% от массы металла в зависимости от содержания в нём серы и фосфора). Для ускорения окисления углерода и других примесей может быть также использована железная руда и окалина.

При продувке вследствие механического воздействия струи кислорода происходит перемешивание металлической ванны. В области вдувания кислорода развивается температура до 300 градусов С.

В отличие от конвертеров с воздушным дутьём уже с самого начала продувки происходит окисление углерода, кремния и других примесей как непосредственно кислородом дутья, так и закисью железа по первичным и вторичным реакциям. В кислородном конвертере уже в начале плавки образуется хорошо нагретый актив основной шлак с необходимым содержанием извести СаО; происходит удаление серы и фосфора с образованием Р2О5 х 4СаО и СаS и СаS в шлаке. По достижении заданного содержания углерода продувку прекращают, выпускают и раскисляют сталь.

Кислородно - конвертерный передел является наиболее высокопроизводительным способом выплавки стали. Кислородный конвертер ёмкостью 300-350 т выплавляет в год 3 млн. т стали. Она характеризуется пониженным содержанием вредных примесей: серы, фосфора, азота. По качеству эта сталь превосходит бессемеровскую и томасовскую сталь и примерно равноценна мартеновской. В кислородных конвертерах успешно осваивается и производство ряда марок легированных сталей. Достоинством такого способа является его «универсальность» в отношении исходных материалов: возможность выплавки качественной стали из чугунов различного химического состава. С увеличением ёмкости конвертеров существенно возрастает их технико экономическая эффективность, будут строится наиболее крупные в мире конвертеры ёмкостью 350 400 т.

Доменный процесс.

Чугун выплавляют в печах шахтного типа доменных печах. Процесс получения чугуна в доменных печах заключается в восстановлении оксидов железа, входящих в состав руды, оксидам углерода, водородом, выделяющимся при сгорании топлива в печи и твердым углеродом. Подготовка железной руды и плаке включают дробление, сортировку, усреднение и другие операции.

Процессы, протекающие в доменной печи, разделяют на: горение топлива; разложение компонентов шихты; восстановление железа; науглероживание железа, восстановление марганца, кремния, фосфора, серы, шлакообразование.

Все эти процессы проходят в доменной печи одновременно, но с разной интенсивностью, при различных температурах и на разных уровнях.

Горение топлива. Вблизи фурм углерода кокса, взаимодействия с кислородом воздуха сгорает. В результате горения выделяется теплота и образуется газовый поток. Горячие газы, поднимаясь, отдают теплоту шихтовым материалов и нагревают их.

Восстановление железа в доменной печи. Шихта (агломерат, кокс) опускаются навстречу потоков газов и при t 500-700 градусов С начинается восстановление оксидов железа. В результате взаимодействия оксида железа с оксидом углерода и твёрдым углеродом кокса, а также с водородом происходит восстановление железа. Восстановление железа из руды в доменной печи происходит по мере продвижения температуры в несколько стадий от высшего оксида к низшему.

Науглероживание железа. В шахте доменной печи наряду с восстановлением железа происходит его науглероживание при взаимодействии с оксидом углерода, коксом, сажестым углеродом. Это приводит к образованию жидкого расплава, который начинается стекать в горн. Капли насыщаются углеродом.

В результате восстановления оксидов железа, части оксидов марганца и кремния, фосфатов и сернистых соединений в данной печи образуется чугун.

 

Легирование сталей.

Легированной называется сталь, в которую, кроме элементов, содержащихся в углеродистой стали специально вводят легирующие элементы (хром, никель, титан, молибден, валадий, медь, и другие) . Содержание легирующих элементов сталях может изменятся в очень широких пределах. Сталь считается легированным хромом, есл

Лучшие

Похожие работы

1 2 3 4 > >>