Курсовые работы по предмету химия

Курсовые работы по предмету химия

Синтез углеродных нанотруб CVD методом с использованием полиоксомолибдатов в качестве предшественников катализатора

Курсовой проект пополнение в коллекции 10.06.2012

В следующей работе для синтеза УНТ используют нанокластер состава: [HxPMo12O40⊂H4Mo72Fe30(CH3COO)15O254(H2O)98]·60H2O. Чтобы вырастить нанотрубки, нанокластер на кремниевой пластине вводится в кварцевую трубку в печь с небольшим количеством порошка катализатора. Сначала пластинка отжигается на воздухе в течение 5 минут при 700°C для разложения органического лиганда молекулярного кластера, затем оксиды Fe и Mo восстанавливаются в токе H2 в течение 5 минут при 900°С до образования металлических нанокластеров, содержащих только Fe и Мо. CVD синтез УНТ проводится в токе метана в течение 15 мин при той же температуре. Наконец, система охлаждается до комнатной температуры в атмосфере аргона. Распределение по диаметрам УНТ составляет от 0,7 до 2,6 нм. Из-за того что образцы нанокластеров просто испарялись на подложках, появилось предположение, что широкое распределение по диаметрам - результат агрегации нанокластеров во время испарения растворителя. Тенденция к агрегации является серьезной проблемой в получении одинаковых УНТ. Широкое распределение по диаметрам УНТ происходило за счет агломерации наночастиц металлов, которые образовывались в процессе восстановления молекулярных нанокластеров в водороде. Таким образом, агломерированные нанокластеры являлись катализаторами роста УНТ, а не отдельные молекулы нанокластеров.

Подробнее

Построение кривой титрования по методам окислительно-восстановительных реакций и нейтрализации

Курсовой проект пополнение в коллекции 09.06.2012

цвет индикатора в растворе зависит от соотyощення [Ind-] / [HInd]. Если концентрация ионов водорода будет равна KHind, то величина [Ind-] будет равна [HInd], т. е концентрации кислой и основной форм индикатора будут равны. В этом случае говорят, что превращение индикатора произошло наполовину. Из этого уравнения также следует, что наблюдаемая при изменении [Н+] перемена света индикатора происходит не резко, а постепенно. Для каждого значения [Н+] имеется определённое отношение концентраций обеих форм индикатора в растворе. Поскольку имеется определённое минимальное количество каждой из форм, которое глаз может уловить в присутствии большого количества другой формы, мы наблюдаем изменение цвета индикатора лишь в определённых границах концентраций ионов водорода Эти границы не имеют теоретического значения: они лишь указывают, между какими значениями [Н+] или рН на практике наблюдается изменение цвета индикатора. Область между двумя крайними значениями рН, определяющими эти границы называется интервалам превращения, областью перемены окраски индикатора, интервалом перехода, интересном изменения окраски индикаторов.

Подробнее

Синтез диметилэтилкарбинола (2-метилбутанола-2)

Курсовой проект пополнение в коллекции 08.06.2012

Смесь перелила в плоскодонную колбу, оставила на неделю, за это время произошло разделение слоев (сверху вниз): прозрачный эфирный слой, белые хлопья, прозрачный водный слой (не густой). Перелила в делительную воронку, смесь опять стала густой. Экстрагировала два раза эфиром (по 25 мл), при этом эфирный слой хорошо отделялся от гелеобразного водного слоя. Соединила эфирные растворы (два прозрачных после экстракции, один светло-желтый), промыла 5% раствором соды (NaHCO3), 2 раза по 25 мл, добавила осушитель (Na2SO4) на 1,5 часа. Провела отгонку эфира на ротационном испарителе (при ~35оС, 10 мин). Осталось около ¼ от объема всего вещества, раствор стал ярко-желтым, немного мутным, добавила осушитель (Na2SO4), оставила на неделю. Добавила 20 мл эфира для экстракции, отфильтровала от осушителя, отогнала эфир на ротационном испарителе (36оС, 6 мин). Провела перегонку с дефлегматором, используя установку на рис. 2. При нагревании в течение 15 минут раствор кипел (из ярко-желтого стал бурым), но температура на термометре не повысилась с комнатной, отгонка не происходила. При создании повышенного давления водоструйным насосом (через отвод аллонжа), температура быстро поднялась, вещество начало перегоняться при 75оС (эта часть была взята для измерения показателя преломления), температура поднялась до 89оС (отогналось еще столько же вещества, как при 75оС). Всего отогналось примерно 3 мл вещества (прозрачное, бесцветное, с запахом), которое использовалось для измерения показателя преломления. До отгонки было предположительно 7 мл вещества.

Подробнее

Изучение равновесия между таутомерными формами молекулы нитрогуанидина с помощью квантово-химических расчетов

Курсовой проект пополнение в коллекции 07.06.2012

Более ранние полуэмпирические методы CNDO, INDO и NDDO были разработаны Дж. Поплом и его группой в то время, когда вычислительные машины могли выполнять неэмпирические расчеты лишь для самых простых молекул. Эти методы ориентированы на корректное воспроизведение электронных характеристик, таких, как дипольный момент, а не теплот образования и геометрических параметров молекул. В наиболее простом из них, методе CNDO (Complete Neglect of Differential Overlap), при расчете интегралов электрон-электронного отталкивания атомные орбитали рассматриваются как сферически симметричные. Ориентация р-орбиталей учитывается только в одноэлектронных резонансных интегралах, величина которых зависит также от размеров орбиталей, расстояний между центрами и значений констант, определяющих тип связи. В более сложном приближении INDO (Intermediate Neglect of Differential Overlap) проводится расчет одноцентровых интегралов отталкивания между атомными орбиталями для одного и того же атома. Впервые ориентация р-орбиталей при расчете интегралов отталкивания учитывалась в следующем по сложности приближении - NDDO (Neglect of Diatomic Differential Overlap). В этом методе учитывались трех- и четырехцентровые интегралы, которые ответственны за перекрывание атомных орбиталей одного и того же атома.

Подробнее

Потенциометрический метод анализа в химии

Курсовой проект пополнение в коллекции 07.06.2012

,%20%d0%be%d1%81%d0%bd%d0%be%d0%b2%d0%b0%d0%bd%d0%bd%d1%8b%d1%85%20%d0%bd%d0%b0%20%d0%b8%d1%81%d0%bf%d0%be%d0%bb%d1%8c%d0%b7%d0%be%d0%b2%d0%b0%d0%bd%d0%b8%d0%b8%20%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%be%d1%85%d0%b8%d0%bc%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d1%85%20%d0%bf%d1%80%d0%be%d1%86%d0%b5%d1%81%d1%81%d0%be%d0%b2,%20%d0%bf%d1%80%d0%be%d0%b8%d1%81%d1%85%d0%be%d0%b4%d1%8f%d1%89%d0%b8%d1%85%20%d0%b2%20%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%be%d0%bb%d0%b8%d1%82%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%be%d0%b9%20%d1%8f%d1%87%d0%b5%d0%b9%d0%ba%d0%b5%20(%d0%b3%d0%b0%d0%bb%d1%8c%d0%b2%d0%b0%d0%bd%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%be%d0%bc%20%d1%8d%d0%bb%d0%b5%d0%bc%d0%b5%d0%bd%d1%82%d0%b5).%20%d0%ad%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%be%d0%bb%d0%b8%d1%82%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b0%d1%8f%20%d1%8f%d1%87%d0%b5%d0%b9%d0%ba%d0%b0%20%d0%bf%d1%80%d0%b5%d0%b4%d1%81%d1%82%d0%b0%d0%b2%d0%bb%d1%8f%d0%b5%d1%82%20%d1%81%d0%be%d0%b1%d0%be%d0%b9%20%d1%81%d0%b8%d1%81%d1%82%d0%b5%d0%bc%d1%83,%20%d1%81%d0%be%d1%81%d1%82%d0%be%d1%8f%d1%89%d1%83%d1%8e%20%d0%b8%d0%b7%20%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%be%d0%b4%d0%be%d0%b2%20%d0%b8%20%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%be%d0%bb%d0%b8%d1%82%d0%be%d0%b2,%20%d0%ba%d0%be%d0%bd%d1%82%d0%b0%d0%ba%d1%82%d0%b8%d1%80%d1%83%d1%8e%d1%89%d0%b8%d1%85%20%d0%bc%d0%b5%d0%b6%d0%b4%d1%83%20%d1%81%d0%be%d0%b1%d0%be%d0%b9.%20%d0%9d%d0%b0%20%d0%b3%d1%80%d0%b0%d0%bd%d0%b8%d1%86%d0%b5%20%d1%80%d0%b0%d0%b7%d0%b4%d0%b5%d0%bb%d0%b0%20%d1%84%d0%b0%d0%b7%20%d0%bc%d0%be%d0%b6%d0%b5%d1%82%20%d0%bf%d1%80%d0%be%d0%b8%d1%81%d1%85%d0%be%d0%b4%d0%b8%d1%82%d1%8c%20%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%be%d0%b4%d0%bd%d0%b0%d1%8f%20%d1%80%d0%b5%d0%b0%d0%ba%d1%86%d0%b8%d1%8f%20%d0%bc%d0%b5%d0%b6%d0%b4%d1%83%20%d0%ba%d0%be%d0%bc%d0%bf%d0%be%d0%bd%d0%b5%d0%bd%d1%82%d0%b0%d0%bc%d0%b8%20%d1%8d%d1%82%d0%b8%d1%85%20%d1%84%d0%b0%d0%b7,%20%d0%b2%20%d1%80%d0%b5%d0%b7%d1%83%d0%bb%d1%8c%d1%82%d0%b0%d1%82%d0%b5%20%d0%ba%d0%be%d1%82%d0%be%d1%80%d0%be%d0%b9%20%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9%20%d0%b7%d0%b0%d1%80%d1%8f%d0%b4%20%d0%bf%d0%b5%d1%80%d0%b5%d1%85%d0%be%d0%b4%d0%b8%d1%82%20%d0%b8%d0%b7%20%d0%be%d0%b4%d0%bd%d0%be%d0%b9%20%d1%84%d0%b0%d0%b7%d1%8b%20%d0%b2%20%d0%b4%d1%80%d1%83%d0%b3%d1%83%d1%8e,%20%d0%b8%20%d0%bd%d0%b0%20%d0%bc%d0%b5%d0%b6%d1%84%d0%b0%d0%b7%d0%bd%d0%be%d0%b9%20%d0%b3%d1%80%d0%b0%d0%bd%d0%b8%d1%86%d0%b5%20%d1%83%d1%81%d1%82%d0%b0%d0%bd%d0%b0%d0%b2%d0%bb%d0%b8%d0%b2%d0%b0%d0%b5%d1%82%d1%81%d1%8f%20%d0%bf%d0%be%d1%82%d0%b5%d0%bd%d1%86%d0%b8%d0%b0%d0%bb.%20%d0%92%20%d0%be%d1%82%d1%81%d1%83%d1%82%d1%81%d1%82%d0%b2%d0%b8%d0%b8%20%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%be%d0%b3%d0%be%20%d1%82%d0%be%d0%ba%d0%b0%20(I=0)%20%d0%b2%20%d0%b7%d0%b0%d0%bc%d0%ba%d0%bd%d1%83%d1%82%d0%be%d0%b9%20%d0%b3%d0%b0%d0%bb%d1%8c%d0%b2%d0%b0%d0%bd%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%be%d0%b9%20%d1%86%d0%b5%d0%bf%d0%b8%20%d0%bd%d0%b0%20%d0%bc%d0%b5%d0%b6%d1%84%d0%b0%d0%b7%d0%bd%d0%be%d0%b9%20%d0%b3%d1%80%d0%b0%d0%bd%d0%b8%d1%86%d0%b5%20%d1%83%d1%81%d1%82%d0%b0%d0%bd%d0%b0%d0%b2%d0%bb%d0%b8%d0%b2%d0%b0%d0%b5%d1%82%d1%81%d1%8f%20%d1%80%d0%b0%d0%b2%d0%bd%d0%be%d0%b2%d0%b5%d1%81%d0%b8%d0%b5%20%d0%b8%20%d0%bf%d0%be%d1%82%d0%b5%d0%bd%d1%86%d0%b8%d0%b0%d0%bb%20%d0%b4%d0%be%d1%81%d1%82%d0%b8%d0%b3%d0%b0%d0%b5%d1%82%20%d1%80%d0%b0%d0%b2%d0%bd%d0%be%d0%b2%d0%b5%d1%81%d0%bd%d0%be%d0%b3%d0%be%20%d0%b7%d0%bd%d0%b0%d1%87%d0%b5%d0%bd%d0%b8%d1%8f.%20%d0%95%d1%81%d0%bb%d0%b8%20%d1%87%d0%b5%d1%80%d0%b5%d0%b7%20%d1%8f%d1%87%d0%b5%d0%b9%d0%ba%d1%83%20%d0%bf%d1%80%d0%be%d1%85%d0%be%d0%b4%d0%b8%d1%82%20%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9%20%d1%82%d0%be%d0%ba%20(I%e2%89%a00),%20%d0%bd%d0%b0%20%d0%bc%d0%b5%d0%b6%d1%84%d0%b0%d0%b7%d0%bd%d0%be%d0%b9%20%d0%b3%d1%80%d0%b0%d0%bd%d0%b8%d1%86%d0%b5%20%d1%80%d0%b0%d0%b2%d0%bd%d0%be%d0%b2%d0%b5%d1%81%d0%b8%d0%b5%20%d0%bd%d0%b5%20%d0%b4%d0%be%d1%81%d1%82%d0%b8%d0%b3%d0%b0%d0%b5%d1%82%d1%81%d1%8f%20%d0%b8%20%d0%b2%20%d1%80%d0%b5%d0%b7%d1%83%d0%bb%d1%8c%d1%82%d0%b0%d1%82%d0%b5%20%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%be%d0%b4%d0%bd%d0%be%d0%b3%d0%be%20%d0%bf%d1%80%d0%be%d1%86%d0%b5%d1%81%d1%81%d0%b0%20%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%be%d0%bd%d1%8b%20%d0%bf%d0%b5%d1%80%d0%b5%d1%85%d0%be%d0%b4%d1%8f%d1%82%20%d0%b8%d0%b7%20%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%be%d0%b4%d0%b0%20%d0%b2%20%d1%80%d0%b0%d1%81%d1%82%d0%b2%d0%be%d1%80%20(%d0%b8%d0%bb%d0%b8%20%d0%bf%d0%be%d0%bb%d0%be%d0%b6%d0%b8%d1%82%d0%b5%d0%bb%d1%8c%d0%bd%d1%8b%d0%b9%20%d0%b7%d0%b0%d1%80%d1%8f%d0%b4%20%d0%b2%20%d0%be%d0%b1%d1%80%d0%b0%d1%82%d0%bd%d0%be%d0%bc%20%d0%bd%d0%b0%d0%bf%d1%80%d0%b0%d0%b2%d0%bb%d0%b5%d0%bd%d0%b8%d0%b8).">Электрохимические методы анализа - это совокупность методов качественного и количественного анализа <http://www.xumuk.ru/encyklopedia/2061.html>, основанных на использовании электрохимических процессов, происходящих в электролитической ячейке (гальваническом элементе). Электролитическая ячейка представляет собой систему, состоящую из электродов и электролитов, контактирующих между собой. На границе раздела фаз может происходить электродная реакция между компонентами этих фаз, в результате которой электрический заряд переходит из одной фазы в другую, и на межфазной границе устанавливается потенциал. В отсутствии электрического тока (I=0) в замкнутой гальванической цепи на межфазной границе устанавливается равновесие и потенциал достигает равновесного значения. Если через ячейку проходит электрический ток (I≠0), на межфазной границе равновесие не достигается и в результате электродного процесса электроны переходят из электрода в раствор (или положительный заряд в обратном направлении).

Подробнее

Синтез и свойства функциональных кремнийорганических соединений для потенциального применения в фотонике и биофотонике

Курсовой проект пополнение в коллекции 02.06.2012

Для более полного развития потенциала оптических устройств требуются и новые материалы. Полимеры могут использоваться для изготовления различных планарных устройств, в том числе волноводов. Исследования в области органо-неорганических гибридных материалов, допированных комплексам лантаноидов, возникли еще в 1990 году в связи с созданием интересных объектов для оптического применения: высокоэффективных и стабильных твердотельных лазеров, новых волоконных усилителей, сенсоров, и многих других. Золь-гель технология - альтернативный путь получения гомогенных высоко прозрачных материалов при низкой температуре. Другие преимущества этой технологии - простота формирования, миниатюризация изделий, высокая чистота прекурсоров, возможность комбинирования органических и неорганических компонентов создают возможность настраивания свойств. Интерес к таким материалам, существующий и по сей день, обусловлен возможностью получения люминесцирующих изделий различного назначения, сохраняющих свойства золь-гель матрицы: термостойкость, возможность регулирования показателя преломления и механических свойств, придания определенной формы изделию, специфической адгезии, защита от коррозии и т.д. Большинство современных телекоммуникационных систем работает на длинах волн вблизи 1550 нм. Это область максимального пропускания для кварцевого стекла [3], но для органического полимера - диапазон интенсивного поглощения, обусловленного обертонами валентных колебаний связей О-Н гидроксильных групп [4]. Люминесцентные свойства материала, допированного комплексом лантаноида, зависят также от наличия в его координационной сфере молекул воды - эффективных тушителей люминесценции за счет колебаний О-Н связей.

Подробнее

Сущность процесса ректификации

Курсовой проект пополнение в коллекции 27.05.2012

Насадочные колонны. Насадочные колонны нашли применение в тех случаях, когда необходимо обеспечить малую величину задержки жидкости в колонне, небольшой перепад давления, а также для малотоннажных производств. В последние годы были созданы новые типы насадок (кольца Паля, из поперечного металла,сеток и др.), которые оказались достаточно эффективными в колоннах большого диаметра. Это создало перспективы применения насадок некоторых типов для многоэтажных производств (вакуумная перегонка мазута и т.п.).

Подробнее

Модифицирование сплавов с нанокристаллической решеткой

Курсовой проект пополнение в коллекции 23.05.2012

С помощью осаждения из плазмы можно получать не просто плёнки нанометровой толщины, но плёнки, имеющие наноструктуру. Фуджимори и соавторы [G0] сообщили, что топкие гранулированные плёнки Со-А1 О обладают очень большим магнетосопротнвлением несмотря на их большое электросопротивление. Это уникальное свойство было отнесено к гранулированной металл-оксидной микроструктуре, содержащей металлические наночастицы, внедрённые и матрицу из неметаллического изолирующего оксида. Гигантское магнетосопротивление возникает при наличии сунерпарамагнетизма, поэтому размер магнитных частиц в плёнке должен быть очень мал. Для выяснения этого в работе (61| изучили микроструктуру плёнок с помощью электронной микроскопии высокого разрешения и малоуглового рассеяния рентгеновских лучей. Тонкие гранулированные плёнки сплавов системы Со А1 О, осаждённые на стеклянную подложку, были получены методом реактивного распыления в атмосфере Ar -1 С) 2 с использованием мишени из сплава C072AI28. Концентрация кислорода в плёнках изменялась от 0 до 47 ат.% с помощью контроля парциального давления О2 в газовой смеси для реактивного распыления. Исследование показало, что гигантское магнетосопротивление в плёнке появляется, когда частицы Со полностью окружены аморфным оксидом алюминия. Микроструктура гранулированных плёнок Cool AI26O1.4 и С052Л120О28 показана на рис. 5 Более светлые участки представляют собой аморфный оксид алюминия, а тёмные участки соответствуют металлическим частицам размером 2 3 нм. В плёнках С052AI20O28 металлические частицы состоят из чистого кобальта Со с ГПУ или ГЦК структурой. В плёнках Со (и AI20O13, содержащих больше алюминия, металлические частицы представляют собой фазу СоА1 со структурой типа CsCl. Значение гигантского магнетосопротивления очень сильно меняется в зависимости от содержания кислорода в плёнке и является максимальным, когда среднее расстояние между металлическими наночастицами минимально. Таким образом, регулируя условия осаждения и, в частности, содержание кислорода в газовой смеси Аг+О2, можно изменять микроструктуру и свойства плёнок Со-А1-О.

Подробнее

Разработка нового метода синтеза алкалоидов азафеналенового ряда

Курсовой проект пополнение в коллекции 23.05.2012

Некоторые из методов синтеза основаны на том факте, что метильная группа в соединениях 1-7 занимает наиболее термодинамически выгодное эквториальное положение [9, 10 11]. Так Айер и др. при разработке метода синтеза (±) - dihydrodeoxyepiallocernuine использовали следующий подход для получения 2-метилпергидро-9b-азафеналеновых алкалоидов myrrhine и hippodamine, (схема 1). Монолитийпроизводное 2,4,6-коллидина 8 обрабатывали 3-бромопропиональдегиддиметилацеталем с образованием 9. Далее при добавлении фениллития образуется анион, который взаимодействует с ацетонитрилом и дает кетон, из которого получили соответствующий ацеталь 10. Восстановление натрием в изоамиловом спирте дает смесь насыщенных стереоизомерных аминов 11, которые отхроматографировали, а затем сняли защитные группы с образованием 12. Нагревание 12 с 2 эквивалентами р-толуолсульфокислоты дает один продукт, кетон 13, с той же конфигурацией на всех стереогенных центрах, что и у myrrhine (5). Так как 13 является неустойчивым соединением, его сразу же преобразовали в тиокеталь 14, который восстанавливали с удалением серы над никелем Ренея с образованием myrrhine (5). Окислением m-CPBA был получен соответствующий N-оксид, идентичный природному N-оксиду myrrhine [10]. Интересно, что циклизация в мягких условиях (пирролидин, уксусная кислота) превращает 12 в смесь двух стереоизомерных кетонов. Получение соответствующих тиокеталей и последующая их десульфуризация дает смесь myrrhine (5) и (±) - hippodamine (3), последний был преобразован в N-оксид (±) - convergine (4). Общий выход 5 и 3 из 12 составил, соответственно, 33% и 23%.

Подробнее

Анализ поваренной соли на содержание основного вещества аргентометрическим методом

Курсовой проект пополнение в коллекции 20.05.2012

Измерение потенциала возникающего в цепи измеряется потенциометрами. Почти все приборы для измерения э.д.с. потенциометрической ячейки - потенциометры - имеют следующую схему (рис. 1.5). Один полюс внешнего источника постоянного тока через переключатель неподвижно присоединен к одному из концов (Л) делителя напряжения с равномерным сечением проволоки и с небольшим сопротивлением (10 - 100 ом). Делитель напряжения обычно снабжен шкалой с равномерными 1100 делениями. Другой полюс источника тока присоединен к переменному сопротивлению малой величины, с которым второй конец (В) делителя напряжения соединяется с помощью подвижного контакта. Таким образом, напряжение источника падает на постоянном участке А В и на некотором участке переменного сопротивления ав. Конец В делителя напряжения присоединяют к одному из электродов Э, ячейки, соблюдая при этом полярность соединения, т.е. полюс источника тока и электрод тем же знаком должны быть присоединены к одному и тому же концу делителя. Второй электрод Э2 подключают последовательно через переключатель, прерыватель тока и индикатор тока к подвижному контакту, свободно перемещаемому на делителе напряжения. Дополнительно к концу В делителя напряжения подключают один из полюсов стандартного элемента Вестона (соблюдая тот же порядок полярности соединения, см. выше), другой полюс которого может быть соединен с помощью переключателя с подвижным контактом. Следовательно, при одном положении переключателя замыкается через прерыватель тока цепь, содержащая элемент Вестона, а при другом - цепь, содержащая потенциометрическую ячейку.

Подробнее

Выбор реактора для проведения процесса окисления хлороводорода

Курсовой проект пополнение в коллекции 16.05.2012

%20c:%20kg%20HCl/kg%d0%9a%d0%be%d0%bd%d1%86.%20(%d0%b3/%d0%bb)%20c:%20kg%20HCl/m">Конц (вес) <http://ru.wikipedia.org/wiki/Концентрация> c: kg HCl/kgКонц. (г/л) c: kg HCl/m³%20">Плотность <http://ru.wikipedia.org/wiki/РџР> ρ: kg/l%20M%20pH%20<http://ru.wikipedia.org/wiki/PH>%20%d0%92%d1%8f%d0%b7%d0%ba%d0%be%d1%81%d1%82%d1%8c%20<http://ru.wikipedia.org/wiki/%d0%a0">Молярность <http://ru.wikipedia.org/wiki/РњРѕР> M pH <http://ru.wikipedia.org/wiki/PH> Вязкость <http://ru.wikipedia.org/wiki/Рязкость> η: mPa·s s: kJ/(kg·K)Давление пара <http://ru.wikipedia.org/w/index.php?title=%D0%94%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BF%D0%B0%D1%80%D0%B0&action=edit> PHCl: PaТ кипения <http://ru.wikipedia.org/wiki/Температура_кипения> b.p.Т плавления <http://ru.wikipedia.org/wiki/Температура_РїР> m.p.10 %104,801,0482,87 M-0,51,163,470,527103 °C−18 °C20 %219,601,0986,02 M-0,81,372,9927,3108 °C−59 °C30 %344,701,1499,45 M-1,01,702,601,41090 °C−52 °C32 %370,881,15910,17 M-1,01,802,553,13084 °C−43 °C34 %397,461,16910,90 M-1,01,902,506,73371 °C−36 °C36 %424,441,17911,64 M-1,11,992,4614,10061 °C−30 °C38 %451,821,18912,39 M-1,12,102,4328,00048 °C−26 °C">Удельная тепло- емкость <http://ru.wikipedia.org/w/index.php?title=%D0%A3%D0%B4%D0%B5%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BF%D0%BB%D0%BE%D0%B5%D0%BC%D0%BA%D0%BE%D1%81%D1%82%D1%8C&action=edit> s: kJ/(kg·K)Давление пара <http://ru.wikipedia.org/w/index.php?title=%D0%94%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5_%D0%BF%D0%B0%D1%80%D0%B0&action=edit> PHCl: PaТ кипения <http://ru.wikipedia.org/wiki/Температура_кипения> b.p.Т плавления <http://ru.wikipedia.org/wiki/Температура_РїР> m.p.10 %104,801,0482,87 M-0,51,163,470,527103 °C−18 °C20 %219,601,0986,02 M-0,81,372,9927,3108 °C−59 °C30 %344,701,1499,45 M-1,01,702,601,41090 °C−52 °C32 %370,881,15910,17 M-1,01,802,553,13084 °C−43 °C34 %397,461,16910,90 M-1,01,902,506,73371 °C−36 °C36 %424,441,17911,64 M-1,11,992,4614,10061 °C−30 °C38 %451,821,18912,39 M-1,12,102,4328,00048 °C−26 °C

Подробнее

Получение биотоплива из растительного сырья

Курсовой проект пополнение в коллекции 16.05.2012

Несмотря на динамичное развитие биотопливной отрасли в мире, при использующихся на сегодняшний день технологиях производства характерные особенности и недостатки биотоплива представляют его лишь в качестве инструмента переходного этапа в преодолении дефицита энергии в мире, весьма незначительно повышая энергетическую безопасность отдельных стран. Потребности в земельных ресурсах и сельскохозяйственных культурах для производства продовольственного сырья слишком велики, чтобы осуществить замену ископаемого топлива в более широких масштабах. В среднесрочной перспективе углеводородные виды топлива будут оставаться важнейшим источником энергообеспечения в мире, при этом биотопливо сможет обеспечить лишь незначительную долю в общемировом топливно-энергетическом балансе и еще меньшую в транспортной энергетике.

Подробнее

Выбор конструкционного материала и способа защиты для изготовления и хранения раствора: H2SO4 - 60%

Курсовой проект пополнение в коллекции 15.05.2012

Экономический и экологический ущерб, наносимый нашей планете коррозией металлических изделий, оборудования и конструкций, неисчислим. В Российской Федерации ежегодные потери металлов из-за их коррозии составляют до 12% общей массы металлофонда, что соответствует утрате до 30% ежегодно производимого металла. Кроме столь огромных связанных с коррозией прямых потерь, существуют еще большие косвенные потери. К ним относятся расходы, обусловленные потерей мощности металлического оборудования, его вынужденными простоями из-за аварий, а также расходы на ликвидацию последствий аварий, часто носящих характер экологических катастроф. Как правило, металлическое изделие, пришедшее в негодность вследствие коррозионных разрушений, отправляют на переплавку. В этом случае общие потери будут включать безвозвратные потери металла, перешедшего в продукты коррозии, стоимость изготовления металлических изделий и косвенные потери. По статистическим данным безвозвратные потери составляют 8-12% от первоначальной массы металла. Стоимость изготовления металлических конструкций зачастую превосходит стоимость самого металла. К косвенным потерям относят расходы, связанные с отказом в работе металлического оборудования, с его простоями и ремонтом, связанные не в последнюю очередь с износом стыковых соединений, выполненных с помощью незащищенных крепежных изделий. Суммарно в большинстве стран потери от коррозии составляют 4-6% национального дохода.

Подробнее

Конверсия угарного газа с паром

Курсовой проект пополнение в коллекции 15.05.2012

Из графиков видно, что равновесная степень превращения не меняется при разных температурах и давлениях. Это можно объяснить тем, что реакция является необратимой, идет до конца, исходные вещества превращаются в продукты реакции. Равновесная степень превращения равна 1 при температурах не ниже 1300С и давлении от 1 до 10 Па.

  1. Для расчета конечной степени превращения в РПС, используя уравнение материального баланса РПС, записываем функцию F. С ее помощью будем искать такое значение х, при котором F станет равной нулю.
  2. Определим функцию XAK, способную с помощью стандартной функции root рассчитать значение конечной степени превращения.
  3. Чтобы построить объемный график поверхности, определим частную функцию от 2 аргументов Xp(T,P) . При этом первое приближение также задается.
  4. Для построения поверхности конечной степени превращения в РПС определим частную функцию XAK1(T,P).
  5. Аналогично предыдущему пункту для построения конечной степени превращения используем частную функцию XAK2(T,P).
  6. Построим поверхности на объемном графике. В слот через запятую введем три обращения к вспомогательной функции Y. После настройки диапазонов аргументов в место трех обращений вводим имена отображаемых функций.
  7. Строим плоский X-Y-график. Сначала в качестве аргумента вводим Tm. Затем устанавливаем соответствующие пределы изменений.
  8. Аналогично строим для зависимости степени превращения от давления.
Подробнее

Синтез карбоната гидроксомеди (II)

Курсовой проект пополнение в коллекции 14.05.2012

Äàííàÿ ìåòîäèêà áûëà âûáðàíà ìíîþ ââèäó ïðîñòîòû ïðîâåäåíèÿ è äîñòóïíîñòè ðåàãåíòîâ (ñûðüÿ) äëÿ ïîëó÷åíèÿ ïðîäóêòà. Ñóùåñòâóåò íåñêîëüêî ïîõîæèõ äðóã íà äðóãà ìåòîäèê ïîëó÷åíèÿ ìàëàõèòà, ðàçëè÷àþùèõñÿ ãëàâíûì îáðàçîì êîëè÷åñòâîì âçÿòîãî ãèäðîêàðáîíàòà íàòðèÿ, ÷òî ôàêòè÷åñêè íå ìåíÿåò èòîã ðàáîòû. Òàê æå ñóùåñòâóþò ðàçëè÷íûå âèäû ïðîìûøëåííîãî ñèíòåçà ìàëàõèòà, íàöåëåííûå ãëàâíûì îáðàçîì íà ïîëó÷åíèå ìèíåðàëà, ïðèãîäíîãî äëÿ èñïîëüçîâàíèÿ â þâåëèðíîì äåëå. Íî ýòè ñïîñîáû ïîëó÷åíèÿ íå ìîãóò ïðîâîäèòüñÿ ìíîþ â ëàáîðàòîðèè, òàê êàê ÿâëÿþòñÿ òåõíîëîãè÷åñêè î÷åíü ñëîæíûìè, à ìíîãèå ïîëíîñòüþ èëè ÷àñòè÷íî çàñåêðå÷åííûìè.

Подробнее

Фенолы: методы синтеза и химические свойства

Курсовой проект пополнение в коллекции 13.05.2012

%20%d0%b8%20%d0%bc%d0%b5%d1%85%d0%b0,%20%d0%bc%d0%be%d0%b4%d0%b8%d1%84%d0%b8%d0%ba%d0%b0%d1%82%d0%be%d1%80%d0%be%d0%b2%20%d0%b8%20%d1%81%d1%82%d0%b0%d0%b1%d0%b8%d0%bb%d0%b8%d0%b7%d0%b0%d1%82%d0%be%d1%80%d0%be%d0%b2%20<http://www.xumuk.ru/encyklopedia/2/4182.html>%20%d1%80%d0%b5%d0%b7%d0%b8%d0%bd%20<http://www.xumuk.ru/encyklopedia/2/3860.html>%20%d0%b8%20%d0%ba%d0%b0%d1%83%d1%87%d1%83%d0%ba%d0%be%d0%b2%20<http://www.xumuk.ru/bse/1243.html>,%20%d0%bf%d1%80%d0%b8%d0%bc%d0%b5%d0%bd%d1%8f%d1%8e%d1%82%d1%81%d1%8f%20%d0%b4%d0%bb%d1%8f%20%d0%be%d0%b1%d1%80%d0%b0%d0%b1%d0%be%d1%82%d0%ba%d0%b8%20%d0%ba%d0%b8%d0%bd%d0%be-%20%d0%b8%20%d1%84%d0%be%d1%82%d0%be%d0%bc%d0%b0%d1%82%d0%b5%d1%80%d0%b8%d0%b0%d0%bb%d0%be%d0%b2%20<http://www.xumuk.ru/encyklopedia/2/4879.html>.%20%d0%92%20%d0%bc%d0%b5%d0%b4%d0%b8%d1%86%d0%b8%d0%bd%d0%b5%20%d1%84%d0%b5%d0%bd%d0%be%d0%bb%d1%8b%20%d0%b8%20%d0%b8%d1%85%20%d0%bf%d1%80%d0%be%d0%b8%d0%b7%d0%b2%d0%be%d0%b4%d0%bd%d1%8b%d0%b5%20%d0%b8%d1%81%d0%bf%d0%be%d0%bb%d1%8c%d0%b7%d1%83%d1%8e%d1%82%20%d0%b2%20%d0%ba%d0%b0%d1%87%d0%b5%d1%81%d1%82%d0%b2%d0%b5%20%d0%b0%d0%bd%d1%82%d0%b8%d0%bc%d0%b8%d0%ba%d1%80%d0%be%d0%b1%d0%bd%d1%8b%d1%85%20(%d1%84%d0%b5%d0%bd%d0%be%d0%bb,%20%d1%80%d0%b5%d0%b7%d0%be%d1%80%d1%86%d0%b8%d0%bd%20<http://www.xumuk.ru/encyklopedia/2/3866.html>),%20%d0%bf%d1%80%d0%be%d1%82%d0%b8%d0%b2%d0%be%d0%b2%d0%be%d1%81%d0%bf%d0%b0%d0%bb%d0%b8%d1%82%d0%b5%d0%bb%d1%8c%d0%bd%d1%8b%d1%85%20(%d1%81%d0%b0%d0%bb%d0%be%d0%bb,%20%d0%be%d1%81%d0%b0%d1%80%d1%81%d0%be%d0%bb%20<http://www.xumuk.ru/farmacevt/1495.html>),%20%d1%81%d0%bf%d0%b0%d0%b7%d0%bc%d0%be%d0%bb%d0%b8%d1%82%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d1%85%20(%d0%b0%d0%b4%d1%80%d0%b5%d0%bd%d0%b0%d0%bb%d0%b8%d0%bd%20<http://www.xumuk.ru/encyklopedia/38.html>,%20%d0%bf%d0%b0%d0%bf%d0%b0%d0%b2%d0%b5%d1%80%d0%b8%d0%bd%20<http://www.xumuk.ru/encyklopedia/2/3185.html>),%20%d0%b6%d0%b0%d1%80%d0%be%d0%bf%d0%be%d0%bd%d0%b8%d0%b6%d0%b0%d1%8e%d1%89%d0%b8%d1%85%20(%d0%b0%d1%81%d0%bf%d0%b8%d1%80%d0%b8%d0%bd%20<http://www.xumuk.ru/encyklopedia/431.html>,%20%d1%81%d0%b0%d0%bb%d0%b8%d1%86%d0%b8%d0%bb%d0%be%d0%b2%d0%b0%d1%8f%20%d0%ba-%d1%82%d0%b0),%20%d0%b0%d0%b4%d1%80%d0%b5%d0%bd%d0%be%d0%bb%d0%b8%d1%82%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d1%85%20(%d0%bc%d0%b5%d0%b7%d0%b0%d1%82%d0%be%d0%bd%20<http://www.xumuk.ru/lekenc/5670.html>),%20%d0%b2%d1%8f%d0%b6%d1%83%d1%89%d0%b8%d1%85%20(%d1%82%d0%b0%d0%bd%d0%bd%d0%b8%d0%bd%d1%8b%20<http://www.xumuk.ru/encyklopedia/2/4311.html>)%20%d0%b8%20%d0%b4%d1%80%d1%83%d0%b3%d0%b8%d1%85%20%d0%bb%d0%b5%d0%ba%d0%b0%d1%80%d1%81%d1%82%d0%b2%d0%b5%d0%bd%d0%bd%d1%8b%d1%85%20%d1%81%d1%80%d0%b5%d0%b4%d1%81%d1%82%d0%b2,%20%d0%b0%20%d1%82%d0%b0%d0%ba%d0%b6%d0%b5%20%d0%b2%d0%b8%d1%82%d0%b0%d0%bc%d0%b8%d0%bd%d0%be%d0%b2%20<http://www.xumuk.ru/encyklopedia/776.html>%20E%20%d0%b8%20P.">Роль фенолов в жизни человека очень велика. В настоящее время наибольшее количество фенола используется для получения фенолформальдегидных смол, которые применяются в производстве фенопластов. Двухатомные фенолы и их производные входят в состав дубителей для кожи <http://www.xumuk.ru/encyklopedia/2047.html> и меха, модификаторов и стабилизаторов <http://www.xumuk.ru/encyklopedia/2/4182.html> резин <http://www.xumuk.ru/encyklopedia/2/3860.html> и каучуков <http://www.xumuk.ru/bse/1243.html>, применяются для обработки кино- и фотоматериалов <http://www.xumuk.ru/encyklopedia/2/4879.html>. В медицине фенолы и их производные используют в качестве антимикробных (фенол, резорцин <http://www.xumuk.ru/encyklopedia/2/3866.html>), противовоспалительных (салол, осарсол <http://www.xumuk.ru/farmacevt/1495.html>), спазмолитических (адреналин <http://www.xumuk.ru/encyklopedia/38.html>, папаверин <http://www.xumuk.ru/encyklopedia/2/3185.html>), жаропонижающих (аспирин <http://www.xumuk.ru/encyklopedia/431.html>, салициловая к-та), адренолитических (мезатон <http://www.xumuk.ru/lekenc/5670.html>), вяжущих (таннины <http://www.xumuk.ru/encyklopedia/2/4311.html>) и других лекарственных средств, а также витаминов <http://www.xumuk.ru/encyklopedia/776.html> E и P.

Подробнее

Project of glucoamylase production by submerged cultivation of Aspergillus awamori

Курсовой проект пополнение в коллекции 12.05.2012

equipment scheme of the production of glucoamylase by submerged cultivation of Asp. awamori is shown on figure 6.saccharified corn mash enters collecting tank 1 from where by a centrifugal pump 2 it is pumped to the agitation tank 8 for preparation of nutrient medium. Other components for medium such as water and salts such as potassium phosphate and ammonium sulphate is supplied from collecting tank 3 are added in agitation tank 8.agitation tank components of nutrient medium is carefully mixed and рН of solution bring to 4.8 with sodium hydroxide. A medium is sterilized then, for what by a pump 9 it is given in a contact head 10, heat from 75-80 °C to 125°C, maintain in a pipe-type holder 11 during 30-40 mines and cool to 30-32 °C in surface heat-exchanger 12.sterilized and cooled medium enters fermenter 13 that is a vertical cylindrical vessel with radial aerators or with two-level turbine stirrer and bubbler for air supply.the process of filling of fermenter an excess pressure 0,25 MPа is supported in it by a steam, supplied through the air duct through an aerating device. Fillfactor of fermenter is 0,75-0,85. At its less value a volume is taken to the norm by the supply of medium from agitation tank 8 through the system of sterilization. After filling of fermenter all system is released from a medium, water is pumped and sterilize with sharp steam. A nutrient medium in fermenter is cooled to 33-35°С.fermenter medium is inoculated by the culture of molds from manifold 14. Before inoculation from fermenter take samples through the sampler for microbiological control and biochemical analyses. Inoculation is carried out through a pressing line preliminary sterilized from manifold to fermenter by sharp steam during 1 hour. For this purpose valve on an output airline of manifold close and lift in it pressure to 0,06-0,08 MPa, leaving in fermenterе pressure 0,02-0,03 MPa, whereupon open a valve on the pressing line in manifold and fermenter and in result of pressure differences inoculum from manifold is pressed into a fermenter. After this close valves on the pressing line, in fermenter drive to the rotation a stirrer and begin the process of growing of culture.pressing of all inoculum culture from manifold let the air out, open a lid and carefully wash internal surface. Then manifold is sterilized and fill with a nutrient medium for the next cycle of preparation of inoculum.medium for manifold is prepared in an agitation tank 5, equipped with a stirrer. In the beginning in agitation tank add water, then turn stirrer and gradually supply salts and corn wort and vegetable oil if necessary. Stirring of medium is made not only by a stirrer, but also as a result of its circulation by pump 6.the same pump medium is given through a contact head 7 into manifold, where it is maintained during 1,5-2 h at 125оС, cool to 33-35°C and inoculate with Asp. awamori spores, through sowing actuator acces with the maintenance of sterility and at minimum motion of air in a workshop. After inoculation open valves for inlet and outlet of air. Expense of air 30-60 m3/(m3-h), its temperature 35-40°С. Duration of cultivation 36 h.of air, supplied in manifold and fermenters, conduct as follows. Before pumping to the rotary liquid-packed ring compressor 17 air is purified from mechanical admixtures on a viscin filter 16, and after a compressor is released from moisture consequently in dehydrator 18 and moisture separator 19. The compressed and dried air is heated in heat-exchanger 20 to the temperature 60-80°C and then purify from a microflora on a general head filter 22, filled with a basaltic fibre. After a head filter air is additionally purified on individual filters 22 at manifold and 23 at fermenter, which are also filled with a basaltic fibre.filters sterilize simultaneously with manifolds and fermenters by sharp steam during 2 h at excess pressure about 0.2 - 0.3 MPa. Moisture is removed from filters by blowing air through them.cultivation of molds in fermenter temperature of nutrient medium 35 °C is supported by automatic control of water supply in the shirt of apparatus. Aeration and agitation with stirrer (frequency of rotation about 150 - 170 rotations/minute) is conducted continuously from the moment of inoculation completion and to the end of fermentation. Amount of the air supplied is 30-60 m3/(m3-h). Sampler and lower draining communication are under steam defence. Duration of the fermentation is 120-160 h.

Подробнее

Основные этапы переработки нефти

Курсовой проект пополнение в коллекции 09.05.2012

Подробнее
< 1 2 3 4 5 6 > >>