Другое по предмету химия

Другое по предмету химия

Люминесцентный метод анализа

Информация пополнение в коллекции 05.04.2018

Подробнее

Основные проблемы современной химии

Информация пополнение в коллекции 26.08.2012

В результате хозяйственной деятельности человека изменяется газовый состав и запыленность нижних слоев атмосферы. Так, при выбросе отходов промышленного химического производства в атмосферу попадает большое количество взвешенных частиц и разнообразных газов. Высокоактивные в биологическом отношении химические соединения могут вызвать эффект отдаленного влияния на человека: хронические воспалительные заболевания различных органов, изменения нервной системы, действие на внутриутробное развитие плода, приводящее к различным отклонениям у новорожденных. Например, по данным Волгоградского центра по гидрометеорологии, за последние 5 лет уровень загрязнения пылью, оксидами азота, сажей, аммиаком, формальдегидом увеличился в 2-5 раз. В основном это происходит из-за несовершенства технологических процессов. Высокое загрязнение хлористым водородом и хлорорганическими веществами в южной промзоне Волгограда объясняется частым отсутствием сырья на химических предприятиях, что приводит к работе оборудования на пониженных нагрузках, при которых очень трудно выдерживать нормы технологического режима.

Подробнее

Биологическая роль йода

Информация пополнение в коллекции 08.08.2012

Йод был открыт в 1811 году французским химиком-технологом Бернаром Куртуа (1777-1838), сыном известного селитровара. Куртуа не был простым ремесленником. Проработав три года в аптеке, он получил разрешение слушать лекции по химии и заниматься в лаборатории Политехнической школы у знаменитого парижского химика и политического деятеля Фуркруа. Бернар Куртуа стал изучать золу морских водорослей, из которой тогда добывали соду. Он заметил, что медный котел, в котором выпаривались зольные растворы, разрушается слишком быстро. Проделывая серию опытов, Куртуа взял две колбы, в одну из которых поместил серную кислоту с железом, а в другую - золу морских водорослей со спиртом. На плече у ученого во время опытов сидел его любимый кот. Однажды он неожиданно спрыгнул, опрокинув колбы, содержимое их смешалось. Куртуа увидел, что над лужицей, которая образовалась при падении сосудов, поднимается фиолетовое облачко.Впоследствии специально нагревая маточный (неразбавленный) раствор золы морских водорослей с концентрированной серной кислотой, он наблюдал выделение "паров великолепного фиолетового цвета", которые осаждались в виде темных блестящих пластинчатых кристаллов. "Удивительная окраска, неизвестная и невиданная ранее, позволяла сделать вывод, что получено новое вещество", - писал Куртуа в своих воспоминаниях.

Подробнее

Физические и химические свойства натрия

Информация пополнение в коллекции 03.07.2012

Подробнее

Выделение и применение терпенов

Информация пополнение в коллекции 24.06.2012

Подробнее

Нефть и нефтепродукты

Информация пополнение в коллекции 20.06.2012

ПоказательТ-1ТС-1Т-2РТТ-6Плотность при 20 °С, кг/м3, не менее800775755775840Фракционный состав, температура, °С:начало кипения, не выше150150---начало кипения, не ниже--6013519510 %, не выше17516514517522050 %. не выше22519519522525590 %, не выше27023025027029098 %, не выше280250280280315Вязкость кинематическая, м2/c:при 20 °С, не менее1,51,251,051,254,5при -40 °С, не более16861660Теплота сгорания низшая, не менеекДж/кг4290042900431004310042900ккал/кг1025010250103001030010250Высота некоптящего пламени, мм, не менее1625252520Кислотность, мг КОН/100 мл, не более0,70,70,70,70,5Температура начала кристаллизации, °С, не выше-60-60-60 (-55)-60-60Иодное число, г I2/100 мл, не более23,53,50,51Содержание:аренов, %, не более20222218,510фактических смол, мг/100 мл, не более65546меркаптановой серы, %, не более-0,0050,0050,0010сероводорода, %, не болееО т с у т с т в и еИспытание на медной пластинкеВ ы д е р ж и в а е тСодержание водорастворимых кислот, щелочей, механических примесей и водыО т с у т с т в и еЗольность, %, не более0,0030,0030,0030,0030,003Содержание мыл нафтеновых кислотО т с у т с т в и еСодержание нафталиновых углеводородов, %, не более2,51,5111Термическая стабильность в статических условиях при 150 °С, мг/100 мл, не более:в течение 4 ч181010--в течение 5 ч---66Термическая стабильность в динамических условиях при 150-180 °С: перепад давления на фильтреза 5 ч, МПа, не более0,0830,083-0,010,01отложения на подогревателе, баллы, не более22-20Люминометрическое число, не менее5055555545Температура вспышкив закрытом тигле, °С, не менее3028-2860

Подробнее

Пленкообразователи на основе олигодиенов

Информация пополнение в коллекции 16.06.2012

Наличие в цепи модифицированных олигобутадиенов рефкционноспособных функциональных групп и двойных связей обуславливает их способность к отверждению под действием тепла или отверждающих агентов, как из органических, так и водных плёнкообразующих систем. Важнейшим свойством жидких ненасыщенных каучуков является их способность к плёнкообразованию. Сведения о плёнкообразовании модифицированных олигобутадиенов- эпоксидированных каучуков со статистическим распределением ЭГ и продуктов их модификации аминами в литературе крайне ограничены. Ранее показано, что ЭОД со статистическим распределением ЭГ проявляют высокую активность с отвердителями кислотного типа в отличии от широко используемых диеновых эпоксидных смол с концевыми ЭГ. На скорость плёнкообразования каучуков оказывают влияние микроструктура, тип отверждающего и аминирующего агентов, степень модификации и температура отверждения. Нами проведено исследование процесса отверждения ЭОД в присутствии перспективных современных отвердителей -фосфорной (ОФК), борной (БК), лимонной (ЛК), ацетилсалициловой (АЦ), аскорбиновая (АСК), а так же биологически активная азот содержащая карбоновая кислота.

Подробнее

Повышение растворимости феназепама путем получения его твердых дисперсий

Информация пополнение в коллекции 11.06.2012

Как видно из полученных результатов (таблица, рис. 1, 2), феназепам лучше растворяется в виде ТД, причем его растворимость из ТД с ПВП значительно выше, чем из ТД с другими носителями (ПЭГ и β-ЦД). Уже через 5 мин концентрация феназепама в растворе ТД с ПВП достигла 327,4 10-4 г/л против 7,4 10-4 г/л для исходной субстанции, т.е. была в 44 раза выше. Как и следовало ожидать, наиболее интенсивное растворение феназепама из ТД с ПВП происходит в течение первых 15 мин, но максимальная концентрация вещества достигается через 40 мин (701,5 10-4 г/л), затем наблюдается постепенное снижение его концентрации (359,1 10-4 г/л). Снижение растворимости можно объяснить процессом рекристаллизации вещества, т.к. на этом участке профиля растворимости феназепама слегка опалесцирующий раствор становится более мутным. Через 60 мин растворимость феназепама из ТД с ПВП была выше растворимости из порошка в 12,8 раз.

Подробнее

Полимеризация винилхлорида

Информация пополнение в коллекции 23.05.2012

Некоторые исследователи считают, что увеличение скорости полимеризации винилхлорида является следствием двухступенчатого характера процесса инициирования. Другие предполагают, что происходит разветвление кинетических цепей в результате образования дополнительных радикалов из-за разрыва растущей цепи на две новые, способные к нормальному росту. Этот вариант маловероятен в свете современных представлений о реакции полимеризации виниловых соединений. Третье объяснение заключается в предположении передачи цепи к «мертвому» полимеру, что приводит к образованию малоподвижной растущей цепи, закрепленной на поверхности выпавшего в осадок полимера. Обрыв цепи такого полимера очень затруднителен, поэтому скорость полимеризации увеличивается. В подтверждение этого механизма было показано что 1) скорость полимеризации повышается при добавлении к полимеризующемуся мономеру «мертвого» полимера, 2) при проведении полимеризации в гомогенной среде, например, в таком хорошем растворителе поливинилхлорида, как тетрагидрофуран, повышения скорости полимеризации винилхлорида пропорционально величине поверхности образующегося полимера. В результате передачи цепи должна образовываться разветвленная структура полимерных молекул.

Подробнее

Химические системы

Информация пополнение в коллекции 19.05.2012

Было бы, однако, неправильно не учитывать той громадной исследовательской работы, которая привела к утверждению системного взгляда на химические знания. Уже с первых шагов химики на интуитивном и эмпирическом уровне поняли, что свойства простых веществ и химических соединений зависят от тех неизменных начал или носителей, которые впоследствии стали называть элементами. Выявление и анализ этих элементов, раскрытие связи между ними и свойствами веществ охватывает значительный период в истории химии, начиная от гипотезы Роберта Бойля (1627-1691) и кончая современными представлениями о химических элементах как разновидностях изотопов, т.е. атомов, обладающих одинаковым зарядом ядра и отличающихся по массе. Этот первый концептуальный уровень можно назвать исследованием различных свойств веществ в зависимости от их химического состава, определяемого их элементами. Химики, как и физики, искали ту первоначальную основу или элемент, с помощью которых пытались объяснить свойства всех простых и сложных веществ.

Подробнее

Полиэтилен высокого давления

Информация пополнение в коллекции 15.05.2012

Санитарно-химическое исследование. Современные способы получения полиэтилена и других, полиолефинов не исключают возможности их загрязнения веществами, используемыми в синтезе этих материалов - растворителями, катализаторами, промывными агентами, различными примесями к сырью. Обнаружена миграция из полиэтилена метанола и изопропанола бензина, полициклических ароматических углеводородов. Катализаторы, как правило, не вымываются, но их присутствие в материале снижает эффективность стабилизаторов, ускоряет окислительную деструкцию полимера и способствует изменению его цвета в процессе эксплуатации. Имеются указания и на возможность миграции формальдегида из полиэтилена, однако уровень миграции вряд ли имеет гигиеническое значение. Из ПЭВД могут выделяться в контактирующие с ним жидкие среды незначительные количества низкомолекулярных соединений, как правило, в безопасных для здоровья концентрациях, но придающих посторонние привкусы и запахи. Существуй прямая зависимость между содержанием в полиолефинах низкомолекулярной фракции и запахом изделий. При удалении низкомолекулярной фракции запах полностью исчезает. При взбалтывании водных вытяжек из изделий из ПЭВД может образовываться быстро исчезающая пена. ПЭВД марки НП 108-168, предназначенный для длительного контакта с питьевой водой, продолжительное время не оказывает существенного влияния на ее качество. Запах и привкус вытяжек до 1,2 балла, миграция формальдегида не обнаружена, окисляемость вытяжек незначительно увеличивается после 20-30 сут. контакта воды с материалом -0,5-6,3 мг О2/л . В вытяжках из ПЭВД с добавкой ТiO2 и ультрамарина не обнаружено существенного изменения органолептических свойств, повышения окисляемости или значительного выделения бромирующихся веществ. Миграция в воду формальдегида, Рb и Cu не отмечена (формальдегид выделялся только в кислую среду - менее 0,5 мг/л). В течение 9 мес. не обнаружено выделения бензо[а]пирена и 1,12-бензоперилена. В некоторых образцах ПЭВД обнаружен бензо[а]пирен, однако миграция его в воду не доказана.

Подробнее

Влияние косметических средств на организм человека

Информация пополнение в коллекции 13.05.2012

. Канцерогенные:- diethanolamine, химикат, который используется не только в кремах, но и в очищающей косметике - лосьонах, сливках, молочке, пенке и другой косметике. DEA получила широкое распространение, за счет образование хорошей пены и отмывающей способности. Сам по себе компонент DEA не вреден, но в реакции с другими компонентами в косметической формуле, способен сформировать чрезвычайно мощное канцерогенное вещество, называемое nitrosodiethanolamine (NDEA). NDEA легко поглощается через кожу и вызывает раковые заболевания.(Monoethanolamine) химический абсорбент, используется в косметике для удаления газов H2S и CO, в составе кремов, как и DEA используется как эмульгатор.(Trithanolamine) - используется как консервант, может реагировать с нитратами и сформировать канцерогенное вещество nitrosamines, легко проникающее через кожу и вызывающее раковые заболевания.(Салициловая кислота (Бета-оксикислота)) растворяет жир и способна впитываться и очищать загрязненные поры. Она уменьшает количество угрей и предотвращает их появление, способствует отбеливанию. В больших дозах салициловая кислота является канцерогеном и мало кто знает, что лечение препаратами содержащими салициловую кислоту должно проводится не постоянно, а курсами, с перерывами не мене месяца.(Butylated Hydroxytoluene) - используется как антиокислитель в кремах и в пище (E321). Связывается с молекулами кислорода, препятствуя тем самым окислению жиров. Является канцерогеном. Запрещен для добавления в пищу в Японии, Румынии, Швеции, Австралии и США (в детском питании).

Подробнее

Очистка воды гиперфильтрацией

Информация пополнение в коллекции 12.05.2012

Подробнее

Приборы для измерения параметров воды

Информация пополнение в коллекции 11.05.2012

Схема проста: pH-метр обычно состоит из операционных усилителей обращения конфигурации, дающих напряжение в цепи около 17 в. Входное сопротивление прибора должно быть очень высоким - примерно от 20 до 1000 МОм, что обусловлено высоким сопротивлением зонда - стеклянного электрода, являющегося наиболее ответственным и важным элементом всех pH-метров. Инвертирующий датчик-усилитель преобразует малое напряжение зонда (0,059 вольт / pH) пропорционально единицам pH, которые затем вновь преобразуются до необходимого напряжения для активизации вольтметра, отображающего показания на шкале pH. Эти методические и схемотехнические приемы дают возможность проводить измерения ЭДС с высокой точностью вне зависимости от влияния внешних электростатических и электромагнитных помех, при любых, даже очень малых, значениях удельной электропроводности (УЭП) среды, вплоть до теоретически чистой воды. Для контроля и настройки режимов pH-метра используется пульт, соединённый с блоком электронного преобразования.

Подробнее

Классификация и свойства сплавов

Информация пополнение в коллекции 08.05.2012

Титановые сплавы. Титановые сплавы превосходят как алюминиевые, так и магниевые в отношении предела прочности и модуля упругости. Их плотность больше, чем всех других легких сплавов, но по удельной прочности они уступают только бериллиевым. При достаточно низком содержании углерода, кислорода и азота они довольно пластичны. Электрическая проводимость и коэффициент теплопроводности титановых сплавов малы, они стойки к износу и истиранию, а их усталостная прочность гораздо выше, чем у магниевых сплавов. Предел ползучести некоторых титановых сплавов при умеренных напряжениях (порядка 90 МПа) остается удовлетворительным примерно до 600° C, что значительно выше температуры, допустимой как для алюминиевых, так и для магниевых сплавов. Титановые сплавы достаточно стойки к действию гидроксидов, растворов солей, азотной и некоторых других активных кислот, но не очень стойки к действию галогеноводородных, серной и ортофосфорной кислот. Титановые сплавы ковки до температур около 1150° C. Они допускают электродуговую сварку в атмосфере инертного газа (аргона или гелия), точечную и роликовую (шовную) сварку. Обработке резанием они не очень поддаются (схватывание режущего инструмента). Плавка титановых сплавов должна производиться в вакууме или контролируемой атмосфере во избежание загрязнения примесями кислорода или азота, вызывающими их охрупчивание. Титановые сплавы применяются в авиационной и космической промышленности для изготовления деталей, работающих при повышенных температурах (150-430° C), а также в некоторых химических аппаратах специального назначения. Из титанованадиевых сплавов изготавливается легкая броня для кабин боевых самолетов. Титаналюминиевованадиевый сплав - основной титановый сплав для реактивных двигателей и корпусов летательных аппаратов. В табл. 3 приведены характеристики специальных сплавов, а в табл. 4 представлены основные элементы, добавляемые к алюминию, магнию и титану, с указанием получаемых при этом свойств.

Подробнее

Химия алканов нефтей

Информация пополнение в коллекции 03.05.2012

Хотя алканы разветвлённого строения в настоящее время практически не используют для каких-либо корреляционных целей. Некоторые из них вполне могут помочь в определении возраста нефти это - 12- и 13- монометилзамещенные алканы их структуры изображены на рисунке 2 [Петров, 1984]. Высокие концентрации этих алканов, не оставляют сомнений в реликтовости их природы. Считается, что высокие концентрации 12- и 13- метилалканов связаны с возрастом и специфичностью исходного органического вещества. В подавляющем большинстве нефтей и битумов, связанными с древними отложениями Сибирской платформы 12- и 13-монометилалканы присутствуют в значительных количествах (десятки процентов от общего количества высокомолекулярных алканов). В высоких концентрациях эти биометки также присутствуют в древних нефтях и рассеянном органическом веществе Омана. На рисунке 8 красными точками обозначены монометилалканы. Однако не все докембрийские нефти содержат эти реликтовые алканы. В нефтях докембрия Волго-Уральской провинции и в некоторых других докембрийских нефтях высокие концентрации этих углеводородов не обнаружены. В настоящее время 12- и 13-метилалканы для древних нефтей Сибирской платформы являются ведущей группой биомаркеров.

Подробнее

Биопластик в упаковке

Информация пополнение в коллекции 02.05.2012

, упаковка пищевых продуктов, одноразовая посуда. Американская компания Easten Chemiical в прошлом году начала производство сложного полиэфира Eastar Bio COPE. Конечный рынок применения - пищевая упаковка, мешки и пакеты для садоводческого и сельскохозяйственного использования. Материал имеет полукристаллическую основу, хорошие свойства прозрачности, а его барьерные характеристики по кислороду выше, чем у полиэтиленовой пленки. При компостировании упаковка разлагается на диоксид углерода, биомассу и воду так же быстро, как обыкновенная газета. Биоразлагаемые материалы немецкой компании BASF марки COPE и Ecoflex обладают технологическими свойствами, аналогичными полиэтилену низкой плотности (LDPE). Пленки Ecoflex имеют высокие характеристики сопротивления проколу и водонепроницаемости. При этом, в отличие от полиэтиленовой, они воздухопроницаемы. Швейцарская фирма DuPont объявила о коммерческом производстве Biomax - гидро-биоразлагаемого полиэфира. Обладая свойствами обычного полиэтилентерефталата, он лишь немого дороже в производстве по сравнению со своим "нефтяным" аналогом. Точка плавления Biomax - 200°С, относительное удлинение варьируется от 50 до 500 %, прочностные характеристики могут регулироваться. Компания ведет активный маркетинг нового полимера как в Европе, так и в США. Ряд компаний предлагают материалы, в которых параметры биоразложения можно регулировать. Английская компания Symphony Environment Ltd. выпустила на рынок биополимер на полиэтиленовой основе, в котором степень разложения контролируется специальными добавками. В зависимости от количества и качества предварительно вносимых добавок полное разложение упаковки может варьироваться в диапазоне от 60 дней до 5 лет. Среди других производителей, предлагающих нестандартные разработки, - итальянская фирма Novamont SpA и английская компания Environmental Polymers Group (EPG). Первая разработала четыре композиции материала марки Mater Bi, нетоксичного полиацеталя на основе крахмала. Вторая - компания EPG - работает над специальными сортами поливинилового спирта, который способен к биоразложению в горячей и холодной воде. Материал будет использован для производства упаковочной пленки методом экструзии с раздувом. Предполагаемая EPG технология включает два компонента: запатентованную технологию экструзии и собственные разработки биодеградантов на основе поливинилового спирта (PVON). Специалисты компании утверждают, что физические свойства изготавливаемой пленки будут эквиваленты, а в некоторых случаях и лучше, чем пленки из поливинилхлорида и полиэтилена, а по стоимости смогут конкурировать с другими биоматериалами. Новейшие технологии использовала американская корпорация Metabolix, концентрирующая свои усилия на PHA, материале со сложно структурой, производимом с помощью трасгенной технологии - know how компании. Технология позволяет изготавливать PHA напрямую, через процессы фотосинтеза, или косвенно, - ферментацией сахаров. Полимер представляет собою высококристаллический термопластик, разделяющий многие свойства с полипропиленом, включая идентичные точку плавления, предел прочности на разрыв, температуру склеивания и саму кристалличность. Предполагаемые рынки применения - упаковка для фаст-фуд, одноразовая упаковка медицинских препаратов. Однако, из всех представленных проектов, как полагают аналитики, наиболее успешным оказался проект, предложенный Cargill Dow, совместного предприятия двух компаний: сельскохозяйственного гиганта Cargill Corporation и лидера в производстве химических продуктов - корпорации Dow Chemical. Предприятие Cargill Dow является лидером в производстве полимолочной кислоты (PLA) - полимера, изготавливаемого из возобновляемых сельскохозяйственных ресурсов: зерновых и сахарной свеклы, то есть на основе растительных сахаров. Получаемый полимер обладает хорошей прозрачностью, прочностью, глянцем, является отличным влагопротектором, так же, как и ПЭТ, не пропускает запахи. Предполагаемая сфера применения - двуосноориентированные упаковочные пленки, жесткие контейнеры и даже покрытия. Компания утверждает, что упаковка из PLA-полимера способна полностью разлагаться в течение 45 дней при условии создания соответствующей структуры компостирования. По утверждению представителей Cargill Dow, технология совместного предприятия предлагает усовершенствованный контроль структуры полимеров. Преимущество данной технологии заключается в возможности использовать в качестве сырья самые разнообразные сельскохозяйственные сахаросодержащие культуры в различных регионах мира. Например, завод, вводимый в эксплуатацию в Европе в 2002 г., скорее всего, будет использовать пшеницу, а не кукурузу или бобовые, поскольку именно эта культура изобилует на европейском континенте. В других регионах в качестве возможного сырья будет выбрана свекла, тапиока или другие натуральные сахара. В отличие от своих конкурентов, биополимеры от Cargill Dow получили ощутимый коммерческий успех. Более десятка европейских и северо-американских фирм уже объявили о возможности использования новых полимерных материалов совместного предприятия. В списках потенциальных партнеров - немецкая фирма Hoechst Trespaphan Gmbh, второй по величине в мире производитель ориентированной полипропиленовой пленки. Сотрудничество двух крупнейших в своем бизнесе компаний обеспечивает возможность поддерживать приемлемые цены на биоразлагаемый полимер, делая его доступным. Аналитики Cargill Dow подтверждают, что "многие предыдущие проекты провалились, попросту "утопив" себя высокой стоимостью. Как бы положительно люди ни относились к проблемам охраны окружающей среды, их вряд ли устроит экологичная, но супердорогая упаковка". Однако в самой индустрии пластмасс, да и за ее пределами, все чаще обсуждается вопрос: "Оправдано ли морально использование сельскохозяйственного сырья для производства пластиков, если в мире существует голод?" Иными словами - не забирает ли Cargill Dow у голодающих пшеницу? В ответ компания приводит парадоксальные цифры. Оказывается, в пищу идет лишь 1 % зерновых, производимых в мире. Около половины всего урожая используется в качестве корма для животных. Еще 10 % идет на изготовление сахара и сахарозаменителей. "Производить биоразлагаемые материалы не означает в прямом смысле слова брать хлеб с чужого стола", - утверждает Пат Грубер, представитель Cargill Dow. - Европа, США выращивают огромные количества пшеницы, не предназначенные для пищи. Мы же можем использовать даже стебли кукурузных растений в качестве сырья. Голод - очень сложная комплексная проблема. Скорее, это политический вопрос, нежели технологический. Его решение выходит за рамки усилий по созданию биополимеров". Сфера применения возобновляемых ресурсов гораздо шире, чем индустрия пластмасс. На производство пластиков уходит менее 1 % от мировой добычи нефти. Вне зависимости от того, будут ли в ближайшее время истощены мировые запасы нефти, биодеграданты привлекут к себе еще больше внимания. Уже сейчас цены на нефть и природный газ, и их поставки крайне нестабильны. Один этот фактор побуждает производителей искать альтернативное сырье для производства полимеров. Сырье же растительное, природное, легко подвергающееся разложению, - лучший выход. А технические характеристики биодеградантов на данный момент не уступают их "нефтяным" аналогам.">На данный момент, пожалуй, все крупные в области производства полимерной продукции фирмы выдвинули свои версии биоразлагаемых материалов. Немецкая компания Bayer представила новый биоразлагаемый полиэфирамид. Полимер имеет полукристаллическую структуру и производится литьем под давлением или экструдируется на традиционном оборудовании. Сырьем для его производства является гексамителен диамин, бутандиол и адипиновая кислота. Получаемая пленка обладает степенью прозрачности, ранжируемой от полупрозрачной до прозрачной. Процесс биоразложения упаковки происходит в течение 60-ти дней при контакте с бактериями и грибками. Предполагаемая рыночная ниша - мешки для мусора <http://click02.begun.ru/click.jsp?url=Uua49VpTUlO41RPeYruFOu7VwZUJe*1rv18PYuedMPMyChctqpA1lCUWNbPXwZWDyEycZJIb1qD8armccq8ZTnikoZQT8HVWsKX-SxxXznpdVRi1xRqbT6qmhvXz6w*PXDJW5lOy9lIQQIrR5aYyh7I*6df-DVEVxPOg1o0gSR8CoM6LKEIPI5HRNP*MJ-Tw-wmdR4vVPKfHgejrXJe4n8wvJrA1IMTn5sKCOL8tk7b7Ghv37HLItWotqMFOp8BU1zkSl4lRSP*TYaiJ83ZBlkvGHS-*XR0mMl1xFXVfWVzy4CafjIySvH8atzVgamb*TAqdtLLWu3KJdTzIsFNDS7RxetBszkRxBTaPnmpaUHMiUV*nixhM*TwzhdFJ-XWwn-eAgA>, упаковка пищевых продуктов, одноразовая посуда. Американская компания Easten Chemiical в прошлом году начала производство сложного полиэфира Eastar Bio COPE. Конечный рынок применения - пищевая упаковка, мешки и пакеты для садоводческого и сельскохозяйственного использования. Материал имеет полукристаллическую основу, хорошие свойства прозрачности, а его барьерные характеристики по кислороду выше, чем у полиэтиленовой пленки. При компостировании упаковка разлагается на диоксид углерода, биомассу и воду так же быстро, как обыкновенная газета. Биоразлагаемые материалы немецкой компании BASF марки COPE и Ecoflex обладают технологическими свойствами, аналогичными полиэтилену низкой плотности (LDPE). Пленки Ecoflex имеют высокие характеристики сопротивления проколу и водонепроницаемости. При этом, в отличие от полиэтиленовой, они воздухопроницаемы. Швейцарская фирма DuPont объявила о коммерческом производстве Biomax - гидро-биоразлагаемого полиэфира. Обладая свойствами обычного полиэтилентерефталата, он лишь немого дороже в производстве по сравнению со своим "нефтяным" аналогом. Точка плавления Biomax - 200°С, относительное удлинение варьируется от 50 до 500 %, прочностные характеристики могут регулироваться. Компания ведет активный маркетинг нового полимера как в Европе, так и в США. Ряд компаний предлагают материалы, в которых параметры биоразложения можно регулировать. Английская компания Symphony Environment Ltd. выпустила на рынок биополимер на полиэтиленовой основе, в котором степень разложения контролируется специальными добавками. В зависимости от количества и качества предварительно вносимых добавок полное разложение упаковки может варьироваться в диапазоне от 60 дней до 5 лет. Среди других производителей, предлагающих нестандартные разработки, - итальянская фирма Novamont SpA и английская компания Environmental Polymers Group (EPG). Первая разработала четыре композиции материала марки Mater Bi, нетоксичного полиацеталя на основе крахмала. Вторая - компания EPG - работает над специальными сортами поливинилового спирта, который способен к биоразложению в горячей и холодной воде. Материал будет использован для производства упаковочной пленки методом экструзии с раздувом. Предполагаемая EPG технология включает два компонента: запатентованную технологию экструзии и собственные разработки биодеградантов на основе поливинилового спирта (PVON). Специалисты компании утверждают, что физические свойства изготавливаемой пленки будут эквиваленты, а в некоторых случаях и лучше, чем пленки из поливинилхлорида и полиэтилена, а по стоимости смогут конкурировать с другими биоматериалами. Новейшие технологии использовала американская корпорация Metabolix, концентрирующая свои усилия на PHA, материале со сложно структурой, производимом с помощью трасгенной технологии - know how компании. Технология позволяет изготавливать PHA напрямую, через процессы фотосинтеза, или косвенно, - ферментацией сахаров. Полимер представляет собою высококристаллический термопластик, разделяющий многие свойства с полипропиленом, включая идентичные точку плавления, предел прочности на разрыв, температуру склеивания и саму кристалличность. Предполагаемые рынки применения - упаковка для фаст-фуд, одноразовая упаковка медицинских препаратов. Однако, из всех представленных проектов, как полагают аналитики, наиболее успешным оказался проект, предложенный Cargill Dow, совместного предприятия двух компаний: сельскохозяйственного гиганта Cargill Corporation и лидера в производстве химических продуктов - корпорации Dow Chemical. Предприятие Cargill Dow является лидером в производстве полимолочной кислоты (PLA) - полимера, изготавливаемого из возобновляемых сельскохозяйственных ресурсов: зерновых и сахарной свеклы, то есть на основе растительных сахаров. Получаемый полимер обладает хорошей прозрачностью, прочностью, глянцем, является отличным влагопротектором, так же, как и ПЭТ, не пропускает запахи. Предполагаемая сфера применения - двуосноориентированные упаковочные пленки, жесткие контейнеры и даже покрытия. Компания утверждает, что упаковка из PLA-полимера способна полностью разлагаться в течение 45 дней при условии создания соответствующей структуры компостирования. По утверждению представителей Cargill Dow, технология совместного предприятия предлагает усовершенствованный контроль структуры полимеров. Преимущество данной технологии заключается в возможности использовать в качестве сырья самые разнообразные сельскохозяйственные сахаросодержащие культуры в различных регионах мира. Например, завод, вводимый в эксплуатацию в Европе в 2002 г., скорее всего, будет использовать пшеницу, а не кукурузу или бобовые, поскольку именно эта культура изобилует на европейском континенте. В других регионах в качестве возможного сырья будет выбрана свекла, тапиока или другие натуральные сахара. В отличие от своих конкурентов, биополимеры от Cargill Dow получили ощутимый коммерческий успех. Более десятка европейских и северо-американских фирм уже объявили о возможности использования новых полимерных материалов совместного предприятия. В списках потенциальных партнеров - немецкая фирма Hoechst Trespaphan Gmbh, второй по величине в мире производитель ориентированной полипропиленовой пленки. Сотрудничество двух крупнейших в своем бизнесе компаний обеспечивает возможность поддерживать приемлемые цены на биоразлагаемый полимер, делая его доступным. Аналитики Cargill Dow подтверждают, что "многие предыдущие проекты провалились, попросту "утопив" себя высокой стоимостью. Как бы положительно люди ни относились к проблемам охраны окружающей среды, их вряд ли устроит экологичная, но супердорогая упаковка". Однако в самой индустрии пластмасс, да и за ее пределами, все чаще обсуждается вопрос: "Оправдано ли морально использование сельскохозяйственного сырья для производства пластиков, если в мире существует голод?" Иными словами - не забирает ли Cargill Dow у голодающих пшеницу? В ответ компания приводит парадоксальные цифры. Оказывается, в пищу идет лишь 1 % зерновых, производимых в мире. Около половины всего урожая используется в качестве корма для животных. Еще 10 % идет на изготовление сахара и сахарозаменителей. "Производить биоразлагаемые материалы не означает в прямом смысле слова брать хлеб с чужого стола", - утверждает Пат Грубер, представитель Cargill Dow. - Европа, США выращивают огромные количества пшеницы, не предназначенные для пищи. Мы же можем использовать даже стебли кукурузных растений в качестве сырья. Голод - очень сложная комплексная проблема. Скорее, это политический вопрос, нежели технологический. Его решение выходит за рамки усилий по созданию биополимеров". Сфера применения возобновляемых ресурсов гораздо шире, чем индустрия пластмасс. На производство пластиков уходит менее 1 % от мировой добычи нефти. Вне зависимости от того, будут ли в ближайшее время истощены мировые запасы нефти, биодеграданты привлекут к себе еще больше внимания. Уже сейчас цены на нефть и природный газ, и их поставки крайне нестабильны. Один этот фактор побуждает производителей искать альтернативное сырье для производства полимеров. Сырье же растительное, природное, легко подвергающееся разложению, - лучший выход. А технические характеристики биодеградантов на данный момент не уступают их "нефтяным" аналогам.

Подробнее

Полярография. Сущность метода. Применение в медико-биологических исследованиях

Информация пополнение в коллекции 29.04.2012

Идея метода инверсионной полярографии состоит в выделении определяемого элемента из очень разбавленного раствора на ртутной капле или тонкой пленке ртути на графитовом электроде или просто на графитовом электроде электролизом с последующим анодным растворением полученной амальгамы. Процесс накопления происходит при потенциале, соответствующем предельному току. Зависимость силы тока от напряжения при анодном растворении имеет вид характерного пика, глубина которого h пропорциональна концентрации определяемого иона, а потенциал минимума Еmin определяется природой иона. Предел обнаружения в методике инверсионной вольтамперометрии на 2-3 порядка ниже предела обнаружения в обычных полярографических методиках. Чем больше продолжительность накопительного электролиза, тем большее каоличество металла перейдет из раствора в ртутную каплю и тем больше возрастет чувствительность анализа. Например, при анализе растворов, в которых концентрация определяемого элементы составляет 10-9 моль/л. Время электролиза доходит до 1 ч.

Подробнее

Методы получения водорода

Информация пополнение в коллекции 21.04.2012

Прямой фотолиз воды требует использование света с энергией квантов 6 эВ, которых практически нет в солнечном спектре. Одним из методов многоступенчатого метода использования света с меньшей энергией квантов является процесс фотоэлектрохимического разложения воды. Фотоэлектрохимические устройства для преобразования солнечной энергии делятся на две группы в зависимости от того, где именно происходит поглощение света и, следовательно, первичный фотопроцесс: в растворе (это так называемые фотогальванические фотоэлементы) или на электроде. Фотогальванические элементы имеют КПД в несколько процентов, поэтому их практическое использование имеет малую перспективу. Основным объектом исследования стали фотоэлектрохимические элементы с полупроводниковыми электродами. Как показали исследования, требования к совершенству кристаллической структуры полупроводника в случае фотоэлектрохимических элементов менее жестки, чем в случае с твердотельными полупроводниковыми преобразователями энергии (солнечными батареями), что и послужило основной причиной широкого развития работ по фотоэлектрохимическим элементам с электродами из полупроводников.

Подробнее
1 2 3 4 5 > >>