Отчеты по практике по предмету геодезия и геология

Отчеты по практике по предмету геодезия и геология

Система верхнего привода буровых установок

Отчет по практике пополнение в коллекции 16.09.2012

ХарактеристикаЗначение1ПроизводительПромТехИнвест2НаименованиеПВГ-16003ТипВСП4Грузоподъемность, не менее, короткая тонна1325Грузоподъемность, не менее, т1206ПриводГидравлический7Максимальный крутящий момент, Нм (кг*м)15700 (1600)8Максимальная скорость (частота) вращения выходного вала, рад/сек. (об./мин.)10,5 (100)9Выходная мощность привода, кВт (л.с.)160 (220)10Масса изделия общая, не более, кг1250011Масса подвесной части (без направляющей балки), кг250012Масса гидроагрегата, кг655013Масса направляющей балки с узлами крепления к мачте, кг280014Габаритные размеры основных составных частей, не более, мм: подвесная часть (без направляющей балки)925х1205х459015Габаритные размеры основных составных частей, не более, мм: направляющая балка320х215х2713016Габаритные размеры основных составных частей, не более, мм: наземный гидроагрегат4572х2286х228617Перемещение вертлюга в поперечном направлении, не менее, мм116018Отклонение элеватора от вертикального положения штропов, не менее, мм142019Исполнение для условий эксплуатации при: температура окружающего воздуха, °Сот -40 до +4020Исполнение для условий эксплуатации при: воздействие атмосферных осадковпрямое21Исполнение для условий эксплуатации при: неразрушающая температура хранения, до, °С-6022Гарантийный срок эксплуатации, лет1

Подробнее

Эксплуатация нефтяных и газовых скважин

Отчет по практике пополнение в коллекции 07.08.2012

 

  1. На каждом предприятий необходимо иметь данные о показателях пожаровзрывоопастности веществ и материалов, применяемых в технологических процессах.
  2. Параметры режима работы технологического оборудования, связанного с применением горючих газов, сжиженных горючих газов, легковоспламеняющихся жидкостей, а также с наличием взрывопожароопасной пыли, обеспечивает взрывопожаробезопасность технологического процесса.
  3. Температура подогрева темных нефтепродуктов при хранений, а также при проведений сливоналивных операций ниже температуры вспышки нефтепродукта в закрытом тигле на 35C и не превышать 90С.
  4. На приборах контроля и регулирования обозначают допустимые области взрывопожаробезопасносных параметров работы технологического оборудования.
  5. При отклонений одного или нескольких взрывоопасных параметров от допустимых пределов приборы контроля и регулирования подают предупредительные и аварийные сигналы.
  6. Для каждого резервуара устанавливается максимальный предел заполнения.
  7. Схема обвязки трубопровода предусматривает, как правило, возможность выключения неисправного оборудования из технологического процесса и обеспечивает аварийный слив.
  8. Основное и вспомогательное технологическое оборудование предприятия защищает от статического электричества.
  9. Работы на взрывопожароопасных технологических объектов выполняется инструментом, исключающим искрообразование.
  10. Оборудование линейной части магистральных нефтепродуктопроводов, а также их ограждения содержат в исправном состояний, а растительность в пределах ограждения систематический удаляют.
  11. Сооружения защиты от разлива нефтепродукта, своевременно ремонтируются, очищаются от нефтепродукта и отложений.
  12. Помещения насосных станций должны быть оснащены газоанализаторами взрывоопасных концентраций, а при их отсутствий на объекте устанавливают порядок отбора и контроля проб.
  13. Устанавливают постоянный контроль за герметичность резервуаров и их оборудование.
  14. Люки, служащие для замеров уровня и отбора проб из резервуаров, имеют герметичные крышки. С внутренней стороны люки снабжают кольцами из металла, исключающего искрообразование.
  15. Перед розжигом огневой печи трубопроводы подачи топлива ко всем неработающим форсункам отглушаются. Зажигать форсунки огневой печи без предварительной продувки камеры сгорания и дымовой трубы водяным паром запрещают. Продувку следует вести не менее 15 минут после появления пара из дымовой трубы.
  16. Для отогрева трубопроводов и узлов задвижек можно применяют только пар, горячую воду или песок, а затем также используют электроподогрев во взрывозащищенном исполнений.
  17. Сети эвакуационного освещения и систем пожарной автоматики присоединяются независимым от основной сети источникам питания или автоматически переключаются независимые источники питания при отключений основных источников.
  18. Здания, сооружения и открытые производственные установки в зависимости от назначения, класса взрывоопасных и пожароопасных зон, среднегодовой продолжительности гроз в районе их расположения и ожидаемого количества поражений молнией обеспечивают молниезащитой зданий и сооружений и настоящих правил.
  19. Ведется замена пожарного водовода.
  20. Решен вопрос по перезарядке и взвешиванию огнетушителей.
  21. Замена жидкостей для тушения в подземных пожарных резервуарах.
Подробнее

Газонефтяные месторождения

Отчет по практике пополнение в коллекции 21.07.2012

Кокуйское газонефтяное месторождение, расположено в Кунгурском и Ординском районах Пермского края, в 28 км юго-западнее г. Кунгура. Открыто в 1961 г., эксплуатируется с 1965 г., степень выработки запасов 44%. В тектоническом отношении месторождение приурочено к бортовой зоне Камско-Кинельской системы палеопрогибов и расположено в пределах Бымско-Кунгурской впадины. Структурные формы месторождения относятся к типу тектоно-седиментационных. Продуктивными на нефть являются турнейские карбонатные, визейские терригенные, серпуховские, башкирские и верейские карбонатные отложения. На месторождении имеются нефтяные, газоконденсатонефтяные и газонефтяные залежи. Газовая составляющая находится в виде свободного газа, газа газовых шапок и растворенного газа. Разработка ведется в сложных горно-геологических условиях, вызванных развитием карстовых процессов в перм. отложениях. Месторождение эксплуатируется ООО «ЛУКОЙЛ-ПЕРМЬ». Геологические запасы нефти на 01.01.2007 г. по сумме категорий А+В+С1 составляют 113,1 млн. т., в т. ч. извлекаемые 25,8 млн. т.

Подробнее

Добыча нефти и газа на Ярино-Каменноложском, Кокуйском и Уньвинском месторождениях

Отчет по практике пополнение в коллекции 20.07.2012

УППН представляет собой небольшой завод по первичной (промысловой) подготовке нефти (т.е. дегазация, обезвоживание, обессоливание, стабилизация). В сырую нефть (рис. 4.2), поступающую по линии I, подается деэмульгатор (по линии II). Насосом 1 нефть направляется в теплообменник 2, в котором нагревается до 50 ¸ 60°С горячей стабильной нефтью, поступающей по линии III, после стабилизационной колонны 8, Подогретая нефть в отстойнике первой ступени обезвоживания 3 частично отделяется от воды и проходит через смеситель 4, где смешивается с пресной водой, поступающей по линии V, для отмывки солей, и направляется в отстойник второй ступени 5 и по линии VI в электродегидратор 6. Отделенная вода отводится по линиям IY. При необходимости улучшения степени обессоливания применяют несколько смесителей, отстойников и электродегидраторов, включенных последовательно. Обессоленная нефть насосом 14 направляется в отпарную часть стабилизационной колонны 8 через теплообменник 7. Нагрев нефти в теплообменнике 7 до 150¸1600С осуществляется за счет тепла стабильной нефти, поступающей непосредственно снизу стабилизационной колонны 8, В стабилизационной колонне происходит отделение легких фракций нефти, которые конденсируются и передаются на ГПЗ. В нижней (отпарной) и верхней частях стабилизационной колонны установлены тарелочные устройства, которые способствуют более полному отделению легких фракций. Внизу отпарной части стабилизационной колонны поддерживается более высокая температура (до 2400С), чем температура нефти, поступающей вверх отпарной части. Температура поддерживается циркуляцией стабильной нефти из нижней части стабилизационной колонны через печь 13. Циркуляция стабильной нефти осуществляется насосом 12 по линии X. В печи 13 может также подогреваться часть нестабильной нефти, которая затем подается вверх отпарной колонны по линии XI. В результате нагрева из нефти интенсивно испаряются легкие фракции, которые поступают в верхнюю часть стабилизационной колонны, где на тарелках происходит более четкое разделение на легкие и тяжелые углеводороды. Пары легких углеводородов и газ по линии VII из стабилизационной колонны поступают в конденсатор-холодильник 9, где они охлаждаются до 30°С, основная их часть конденсируется и накапливается в емкости орошения 10. Газ и несконденсировавшиеся пары направляются по линии VIII на горелки печи 13. Конденсат (широкая фракция легких углеводородов) насосом 11 и перекачивается в емкости хранения, а часть по линии IX направляется вверх стабилизационной колонны на орошение. Часто для перемещения нефти от АГЗУ до ЦСП применяют ДНС - дожимную насосную станцию, т.к. пластового давления оказывается недостаточно.

Подробнее

Перенос точек на местность

Отчет по практике пополнение в коллекции 19.07.2012

Журнал измерения горизонтальных углов способом полного приема№ст№ ст. наблюдПолож. кругаОтсчет по ГКβкп βклβср1ВКП305º32'85º102КП220º22'85º11'ВКЛ125º33'85º11'2КЛ40º22'2ВКП24º42'101º01'101º01'3КП284º41'ВКЛ204º42'101º01'3КЛ103º41'32КП263º47'72º57'ВКП190º50'72º57'2КЛ83º48'72º57'ВКЛ10º51'2ВКП80º40'88º44'88º44'1КП169º24'ВКЛ260º42'88º43'1КЛ349º25'Сбиваем лимб1ВКП24º39'85º102КП299º30'85º10'ВКЛ204º40'85º09'2КЛ119º30'2ВКП122º16'101º01'101º01'3КП21º15'ВКЛ302º16'101º01'3КЛ201º15'32КП217º39'72º54'ВКП144º45'72º55'2КЛ37º41'72º55'ВКЛ324º46'2ВКП24º42'88º43'88º44'1КП113º25'ВКЛ204º42'88º44'1КЛ293º26'

Подробнее

Водозабор Коренёвский

Отчет по практике пополнение в коллекции 18.07.2012

При скором фильтровании значительно быстрее происходит загрязнение фильтра, требующее его очистки. Очистку скорых фильтров производят путем промывки фильтрующего материала обратным током чистой воды, подаваемой снизу через дренаж и проходящей через слои гравия и песка. Промывка фильтров производится 1 раз в сутки. В отдельных случаях необходимость промывки может быть вызвана ухудшением качества фильтрата (увеличение остаточного железа свыше 0,3 мг/л). При промывке фильтр выключается из работы, промывная вода подается снизу через дренажные устройства и проходит слои гравия и песка в обратном направлении. Скорость прохождения через фильтр промывной воды в несколько раз больше скорости фильтрования. Вода взмучивает песок и интенсивно омывает его от поступивших в процессе фильтрования загрязнений. Интенсивность и продолжительность промывки применяется в соответствии с данными в табл.1. Во избежание смещения подстилающих слоев и перемешивания фильтрующих слоев загрузки при промывке включение и выключение фильтровальных сооружений производят с постепенным в течении 1-5 минут наращиванием или снижением расхода промывной воды. Качество отмывки загрузки оценивают по постоянству начальной потери напора при одинаковой скорости фильтрования для предыдущих и последующих рабочих циклов фильтровального сооружения. Промывная вода отводится через желоба. Сброс промывной воды производится в ручей при помощи насосной станции с предварительным отстаиванием в двух отстойниках.

Подробнее

Анализ деятельности ООО "Еврохим" на Верхнекамском месторождении

Отчет по практике пополнение в коллекции 25.06.2012

Калийные соли (сильвиниты), легкорастворимые в воде горные породы, сложенные в основном галитом (NaCl) и сильвином (KCl), являются рудой для получения хлорных калийных удобрений, моющих средств и различных химикатов. В Пермском крае калийные соли слагают залежи сильвинитов Верхнекамского месторождения солей. Выделяют красную, пеструю и полосчатую разновидности сильвинитов. Красный сильвинит обладает отчетливой слоистой текстурой. Большая часть прослоев сложена серым галитом, присутствуют прослои галопелитового (глинистого) материала мощностью 1-2 мм. Остальная часть породы состоит из прослоев мощностью 1-5 см очень богатого KCl кирпично-красного сильвинита. Пестрый сильвинит характеризуется неяснослоистой или массивной текстурой и крупно- и грубозернистой структурой. Зерна сильвина обычно молочно-белые с красной оторочкой, галит - серый, иногда голубой и синий. Полосчатый сильвинит похож на красный, но отличается от него более тонкой слоистостью и большим содержанием сильвина. Промышленными являются пласты сильвинитовых руд КрIIIаб, КрII, АБ и В с содержанием KCl 15-45%. Вредными примесями являются MgCl2 и нерастворимый в воде остаток (н. о.). Переработка сильвинитов осуществляется галургическим (химический) и флотационным способами. Первый основан на различной растворимости составных частей руд в воде и последующей раздельной кристаллизации солей из раствора при охлаждении. Второй базируется на различной способности минералов, входящих в состав солей, смачиваться жидкостями. Выбор способа обогащения зависит в основном от содержания в них KCl, Н.О. и МgСl2. Продукцией переработки сильвинитов являются калийные удобрения. Геологические запасы сильвинитов месторождения огромны и оцениваются в 113,2 млрд. т. Обеспеченность предприятий ОАО «Уралкалий» и ОАО «Сильвинит» промышленными запасами сильвинитов при годовой добыче сырых солей порядка 30 млн. т. и коэффициенте извлечении из недр 0,5 составляет 245 лет. Объем добычи калийных солей в Перм. крае составляет более 36 млн. т в год.

Подробнее

Комплекс малогабаритного бурового оборудования КМБ 2-10

Отчет по практике пополнение в коллекции 24.06.2012

На сегодняшний день является самым быстрым, удобным и безопасным методом изготовления (устройства) отверстий (в размер) в железобетоне (ж/б, ж/бетоне, монолите), бетоне, кирпиче, камне, граните и др. материалах под сети коммуникаций: вентиляция - отверстия для провода через стены и перекрытиях коробов и труб; отопление, канализация, водопровод, пожарный водопровод, холодоснабжение, теплоснабжение - отверстия для провода сквозь перекрытия труб стояков, а в стенах и перегородках для разводки сетей по этажам, в наружных стенах и фундаментах для подключение к наружным коммуникациям (магистралям); электроснабжение, интернет, связь, системы пожарной и др. сигнализации, слаботочка - отверстия в стенах и перекрытиях под кабеля, кабель-каналы, трубные блоки; кондиционирование - отверстия в стенах и перекрытиях под трубы хладогена; а так же всевозможные технологические (в том числе и монтажные) отверстия как в стенах, перекрытиях и фундаментах.

Подробнее

"Везерфорд" на Карачаганкском месторождении

Отчет по практике пополнение в коллекции 19.05.2012

Для эксплуатационных объектов предусматриваются самостоятельные сетки скважин как эксплуатационных, так и нагнетательных. Закачка сухого газа в I объект будет производиться в нагнетательные скважины расположенные в сводовых зонах, которые в основном характеризуются максимальной продуктивностью. Добывающие и нагнетательные скважины на II объекте располагаются по семиточечной системе с расположениями между скважинами 1,1 км. Площадная блочная закачка придаёт системе нагнетания автономность и позволяет адаптировать её с учётом новой информации. В последующем сетка добывающих и нагнетательных скважин будет уплотняться до 500 м в зонах нефтяной оторочки и II объекта с большим удельным запасом газа. Предусматривается взаимозаменяемость нагнетательных и добывающих скважин. II и III эксплуатационные объекты представляют сложную гидродинамическую систему с неясной степенью вертикальной и площадной сообщаемости. В связи с этим планируемая система размещения и вскрытия скважин на II + III объекты допускает возможность её адаптации к изменяющимся требованиям. Большинство скважин бурятся на нижнюю часть карбона (глубина 5200 м и 5250 м) с последующей выборочной перфорацией II и III объектов. Поддержание давления в зонах с гидродинамической связью между II и III объектами осуществляется закачкой газа во II объект с использованием единой сетки нагнетательных скважин для II и III объектов. Нефть III объекта вытесняется жирным газом из буферной зоны II объекта, примыкающей к нефтяной зоне. В зонах, в которых отсутствует гидродинамическая связь между II и III объектами организуется раздельная или одновременная закачка газа во II и III объекты. На первом этапе нагнетательные скважины используются в качестве добывающих (не менее полугода). Это позволит получить данные о продуктивных характеристиках отдельных пластов, оценить возможный профиль приёмистости и принять меры по его регулированию. Кроме того, предварительное дренирование позволит очистить призабойную зону и увеличить репрессию на пласт. Допускается в ряде случаев дренирование эксплуатационных объектов скважинами с открытым стволом, а также совместное дренирование в одной скважине несколько объектов (I +II, II +III, I +II +III). Это касается как базовых скважин, так и скважин, расположенных в периферийных зонах с небольшими общими эффективными мощностями. Для зон нефтяной оторочки с эффективными мощностями 80-120 м создаётся самостоятельная сетка нефтяных скважин с использованием 2-х пакерной схемы, компоновки подземного оборудования позволяющую осуществлять совместно раздельную эксплуатацию 2-х объектов. В пределах основных эксплуатационных объектов могут быть выделены дополнительно подобъекты макрозон, для которых необходимо выбирать наиболее эффективную модификацию сайклинг-процесса (латеральный, вертикальный, комбинированный, циклический). Анализ геологического строения и параметров залежи показывает, что для ряда зон окажется неэффективным применение сайклинг-процесса, и они будут разрабатываться на истощение. Придаётся большое значение проведению на скважинах интенсификации различными методами для снижения депрессий на пласт увеличения продуктивности эксплуатационных и приёмистости нагнетательных скважин. Для повышения эффективности закачки с точки зрения допрорывного и общего коэффициентов охвата, предусматривается разнесение по вертикали зон отбора и закачки при условии отсутствия в разрезе непроницаемых прослоев. В процессе эксплуатации будет осуществляться переход к схемам (одновременно раздельная эксплуатация) в том числе с двумя рядами НКТ, позволяющий снизить потребный фонд добывающих и нагнетательных скважин и повысить регулируемость системы разработки.

Подробнее

Геологическое строение и нефтегазоносность Садового месторождения

Отчет по практике пополнение в коллекции 25.04.2012

Первая разведочная скважина 1 была заложена в своде поднятия, закаргированного по отражающему горизонту «Д», и пробурена в 1967 году с отрицательными результатами, так как промышленных скоплений нефти в разрезе палеозоя не выявила. Садовое месторождение было открыто в 1968 году скважиной 2. Всего на месторождении на дату составления отчета пробурено 4 разведочные и 2 эксплуатационные скважины. Садовое месторождение введено в промышленную разработку в 1972-73 гг. разведочными скважинами 2 и 4 (соответственно, залежи нефти Дк7 тиманского и Д1 пашийского горизонтов верхнего девона). В 2002г. скважиной 112 открыта залежь пласта Б2 бобриковского горизонта нижнего карбона. Эксплуатацию залежей осуществляет НГДУ «Сергиевскнефть», находящееся в пос. Суходол. Садовое месторождение обустроено и связано через Сосновско-Дерюжевское месторождение нефтепроводом с ЦПС, находящимся к западу от г.Похвистнево. Лицензия на разработку Садового месторождения СМР 00134НЭ выдана Администрацией Самарской области сроком действия до 16.03.2015г. Добыча нефти по состоянию на 1.01.2003г. составляет по месторождению 107,1 тыс. тонн

Подробнее

Методика геодезических измерений на местности

Отчет по практике пополнение в коллекции 25.04.2012

%20%d0%95%d0%ba%d0%b0%d1%82%d0%b5%d1%80%d0%b8%d0%bd%d0%b1%d1%83%d1%80%d0%b3%d0%b0%20<http://ru.wikipedia.org/wiki/%D0%95%D0%BA%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%BD%D0%B1%D1%83%D1%80%D0%B3>.%20%d0%a0%d0%b0%d1%81%d0%bf%d0%be%d0%bb%d0%be%d0%b6%d0%b5%d0%bd%20%d0%b2%20%d0%a7%d0%ba%d0%b0%d0%bb%d0%be%d0%b2%d1%81%d0%ba%d0%be%d0%bc%20%d0%b0%d0%b4%d0%bc%d0%b8%d0%bd%d0%b8%d1%81%d1%82%d1%80%d0%b0%d1%82%d0%b8%d0%b2%d0%bd%d0%be%d0%bc%20%d1%80%d0%b0%d0%b9%d0%be%d0%bd%d0%b5%20%d0%95%d0%ba%d0%b0%d1%82%d0%b5%d1%80%d0%b8%d0%bd%d0%b1%d1%83%d1%80%d0%b3%d0%b0%20<http://ru.wikipedia.org/wiki/%D0%A7%D0%BA%D0%B0%D0%BB%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D1%80%D0%B0%D0%B9%D0%BE%D0%BD_%D0%95%D0%BA%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%BD%D0%B1%D1%83%D1%80%D0%B3%D0%B0>,%20%d0%bd%d0%b0%20%d1%8e%d0%b6%d0%bd%d0%be%d0%b9%20%d0%be%d0%ba%d1%80%d0%b0%d0%b8%d0%bd%d0%b5%20%d0%b3%d0%be%d1%80%d0%be%d0%b4%d0%b0%20%d0%bf%d0%be%20%d0%be%d0%b1%d0%be%d0%b8%d0%bc%20%d0%b1%d0%b5%d1%80%d0%b5%d0%b3%d0%b0%d0%bc%20%d1%80%d0%b5%d0%ba%d0%b8%20%d0%98%d1%81%d0%b5%d1%82%d1%8c%20<http://ru.wikipedia.org/wiki/%D0%98%D1%81%D0%B5%D1%82%D1%8C>%20%d0%b8%20%d0%b5%d1%91%20%d0%bf%d1%80%d0%b0%d0%b2%d0%be%d0%b3%d0%be%20%d0%bf%d1%80%d0%b8%d1%82%d0%be%d0%ba%d0%b0%20-%20%d1%80%d0%b5%d0%ba%d0%b8%20%d0%9f%d0%b0%d1%82%d1%80%d1%83%d1%88%d0%b8%d1%85%d0%b0%20<http://ru.wikipedia.org/wiki/%D0%9F%D0%B0%D1%82%D1%80%D1%83%D1%88%D0%B8%D1%85%D0%B0>,%20%d1%83%20%d1%81%d0%b5%d0%b2%d0%b5%d1%80%d0%bd%d1%8b%d1%85%20%d1%81%d0%ba%d0%bb%d0%be%d0%bd%d0%be%d0%b2%20%d0%a3%d0%ba%d1%82%d1%83%d1%81%d1%81%d0%ba%d0%b8%d1%85%20%d0%b3%d0%be%d1%80%20<http://ru.wikipedia.org/wiki/%D0%A3%D0%BA%D1%82%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B5_%D0%B3%D0%BE%D1%80%D1%8B>.%20%d0%a1%20%d1%81%d0%b5%d0%b2%d0%b5%d1%80%d0%b0%20%d0%a3%d0%ba%d1%82%d1%83%d1%81%20%d0%b3%d1%80%d0%b0%d0%bd%d0%b8%d1%87%d0%b8%d1%82%20%d1%81%20%d0%b6%d0%b8%d0%bb%d1%8b%d0%bc%20%d1%80%d0%b0%d0%b9%d0%be%d0%bd%d0%be%d0%bc%20%c2%ab%d0%91%d0%be%d1%82%d0%b0%d0%bd%d0%b8%d1%87%d0%b5%d1%81%d0%ba%d0%b8%d0%b9%20<http://ru.wikipedia.org/wiki/%D0%91%D0%BE%D1%82%D0%B0%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%28%D0%95%D0%BA%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%BD%D0%B1%D1%83%D1%80%D0%B3%29>%c2%bb,%20%d1%81%20%d0%b7%d0%b0%d0%bf%d0%b0%d0%b4%d0%b0%20%d1%81%20%d0%b6%d0%b8%d0%bb%d1%8b%d0%bc%20%d1%80%d0%b0%d0%b9%d0%be%d0%bd%d0%be%d0%bc%20%c2%ab%d0%92%d1%82%d0%be%d1%80%d1%87%d0%b5%d1%80%d0%bc%d0%b5%d1%82%20<http://ru.wikipedia.org/wiki/%D0%92%D1%82%D0%BE%D1%80%D1%87%D0%B5%D1%80%D0%BC%D0%B5%D1%82_%28%D0%95%D0%BA%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%BD%D0%B1%D1%83%D1%80%D0%B3%29>%c2%bb,%20%d0%bd%d0%b0%20%d1%8e%d0%b3%d0%be-%d0%b7%d0%b0%d0%bf%d0%b0%d0%b4%d0%b5%20%d1%81%20%d0%b6%d0%b8%d0%bb%d1%8b%d0%bc%20%d1%80%d0%b0%d0%b9%d0%be%d0%bd%d0%be%d0%bc%20%c2%ab%d0%95%d0%bb%d0%b8%d0%b7%d0%b0%d0%b2%d0%b5%d1%82%c2%bb,%20%d1%8e%d0%b6%d0%bd%d0%be%d0%b9%20%d0%b3%d1%80%d0%b0%d0%bd%d0%b8%d1%86%d0%b5%d0%b9%20%d1%80%d0%b0%d0%b9%d0%be%d0%bd%d0%b0%20%d1%8f%d0%b2%d0%bb%d1%8f%d0%b5%d1%82%d1%81%d1%8f%20%d0%a3%d0%ba%d1%82%d1%83%d1%81%d1%81%d0%ba%d0%b8%d0%b9%20%d0%bb%d0%b5%d1%81%d0%be%d0%bf%d0%b0%d1%80%d0%ba.%20%d0%a0%d0%b5%d0%ba%d0%be%d0%b9%20%d0%98%d1%81%d0%b5%d1%82%d1%8c%20%d1%80%d0%b0%d0%b9%d0%be%d0%bd%20%d0%b4%d0%b5%d0%bb%d0%b8%d1%82%d1%81%d1%8f%20%d0%bd%d0%b0%20%d0%b4%d0%b2%d0%b5%20%d0%be%d0%b1%d0%be%d1%81%d0%be%d0%b1%d0%bb%d0%b5%d0%bd%d0%bd%d1%8b%d0%b5%20%d1%87%d0%b0%d1%81%d1%82%d0%b8:%20%d0%a3%d0%ba%d1%82%d1%83%d1%81%20%d0%9f%d1%80%d0%b0%d0%b2%d0%be%d0%b1%d0%b5%d1%80%d0%b5%d0%b6%d0%bd%d1%8b%d0%b9%20%d0%b8%20%d0%a3%d0%ba%d1%82%d1%83%d1%81%20%d0%9b%d0%b5%d0%b2%d0%be%d0%b1%d0%b5%d1%80%d0%b5%d0%b6%d0%bd%d1%8b%d0%b9.">Практика проходила на Уктусе. Это жилой район <http://ru.wikipedia.org/wiki/%D0%A0%D0%B0%D0%B9%D0%BE%D0%BD> Екатеринбурга <http://ru.wikipedia.org/wiki/%D0%95%D0%BA%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%BD%D0%B1%D1%83%D1%80%D0%B3>. Расположен в Чкаловском административном районе Екатеринбурга <http://ru.wikipedia.org/wiki/%D0%A7%D0%BA%D0%B0%D0%BB%D0%BE%D0%B2%D1%81%D0%BA%D0%B8%D0%B9_%D1%80%D0%B0%D0%B9%D0%BE%D0%BD_%D0%95%D0%BA%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%BD%D0%B1%D1%83%D1%80%D0%B3%D0%B0>, на южной окраине города по обоим берегам реки Исеть <http://ru.wikipedia.org/wiki/%D0%98%D1%81%D0%B5%D1%82%D1%8C> и её правого притока - реки Патрушиха <http://ru.wikipedia.org/wiki/%D0%9F%D0%B0%D1%82%D1%80%D1%83%D1%88%D0%B8%D1%85%D0%B0>, у северных склонов Уктусских гор <http://ru.wikipedia.org/wiki/%D0%A3%D0%BA%D1%82%D1%83%D1%81%D1%81%D0%BA%D0%B8%D0%B5_%D0%B3%D0%BE%D1%80%D1%8B>. С севера Уктус граничит с жилым районом «Ботанический <http://ru.wikipedia.org/wiki/%D0%91%D0%BE%D1%82%D0%B0%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%28%D0%95%D0%BA%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%BD%D0%B1%D1%83%D1%80%D0%B3%29>», с запада с жилым районом «Вторчермет <http://ru.wikipedia.org/wiki/%D0%92%D1%82%D0%BE%D1%80%D1%87%D0%B5%D1%80%D0%BC%D0%B5%D1%82_%28%D0%95%D0%BA%D0%B0%D1%82%D0%B5%D1%80%D0%B8%D0%BD%D0%B1%D1%83%D1%80%D0%B3%29>», на юго-западе с жилым районом «Елизавет», южной границей района является Уктусский лесопарк. Рекой Исеть район делится на две обособленные части: Уктус Правобережный и Уктус Левобережный.

Подробнее

Геолого-геоморфологическое исследование местности практика

Отчет по практике пополнение в коллекции 14.04.2012

Оползни. Это разнообразные смешения горных пород, развивающиеся на крутых склонах, берегах рек и озер. Оползни возникают в том случае, когда в каком-то участке создаются благоприятные для этого гидрогеологические условия. Особенно способствует оползням такая обстановка, когда водопроницаемые породы (песок, супесь) подстилаются горизонтом водоупорных пород (глины), причем, падение кровли водоупорных пород совпадает с направлением уклона поверхности. Поверхность сползания может быть динамической (подчинявшейся законам механики) или предопределенной (зависящей от геологической обстановки). Динамическая поверхность скольжения, по которой движется оползень, имеет обычно вогнутую форму, которая круче в верхней части склона и выполаживается к его подножию. В поперечном сечении эта поверхность близка к форме параболы. Предопределенная поверхность сползания имеет различную форму и обычно подчиняется конфигурации кровли водоупорного слоя. Базисом сползания может быть подошва склона, урез воды в реке, уровень поймы или площадка террасы. В результате оползней образуются оползневые тела различной формы, которые обычно отделяются от стенки отрыва западинами, в которых могут формироваться заболоченные участки или небольшие озера.

Подробнее

Деятельность ОАО "Саратовнефтегаз" по добыче нефти и газа

Отчет по практике пополнение в коллекции 07.04.2012

Основной принцип маркшейдерской съёмки - последовательный переход от общих, более точных геометрических построений, к частным, менее точным построениям, в соответствии с этим процесс съёмки включает построение плановых и высотных маркшейдерских опорных сетей на земной поверхности и в горных выработках, построение съёмочных сетей и съёмочные работы (собственно определение координат отдельных точек). Конечный результат Маркшейдерская съёмка - чертежи горной графической документации. Весь процесс их составления состоит из трёх этапов: определение пространственных координат точек; вычисление и математическая обработка результатов измерения; графические работы по составлению чертежей. Точность съёмки и её масштабы регламентируются технической инструкцией по производству маркшейдерских работ [4].

Подробнее

Технология бурения нефтяных и газовых скважин

Отчет по практике пополнение в коллекции 20.03.2012

Подробнее

Комплекс геодезических работ и процесс камеральной обработки геодезических измерений

Отчет по практике пополнение в коллекции 21.02.2012

Полигонометрический ход: A, B, C, D - исходные пункты; bв Яl ..., bn - измеренные углы; S1, S2, ..., Sn - измеренные стороны; aAB, aCD - исходные дирекционные углы. Пункты полигонометрич. хода закреплены спец. устройствами, имеющими метку (геодезич. центр), и служат плановой основой для геодезич. измерений, выполняемых при картографировании земной поверхности, топографич. и маркшейдерских съёмках, проведении инж. изысканий, a также при стр-ве и эксплуатации разл. сооружений. Ha больших терр. создают системы взаимно связанных полигонометрич. ходов или замкнутых полигонов, образующих полигонометрич. сети. Углы в П. измеряют, как правило, высокоточными и точными теодолитами, при этом визирными целями служат марки, устанавливаемые на штативах над центрами пунктов. Pасстояния между пунктами измеряют электромагнитными дальномерами. При построении геодезич. сетей сгущения, съёмочных и маркшейдерских сетей методом П. наиболее целесообразно применять электро-оптич. тахеометры, позволяющие одновременно выполнять угловые и линейные измерения c автоматич. регистрацией и частичной обработкой их результатов. Полигонометрич. ход опирается на исходные пункты A, B и C, D c известными координатами и дирекционными углами αAB и αCD, что позволяет обнаружить т.н. угловую и координатные невязки, зависящие от погрешностей измерения расстояний и углов. Hевязки устраняют в процессе уравнивания путём введения в измеренные величины поправок, определяемых на основе метода наименьших квадратов. Пo уравненным значениям углов и линий вычисляют координаты пунктов хода. Уравнивание полигонометрич. сетей и вычисление координат пунктов выполняют на ЭВМ. Предельные длины сторон, их число, a также требуемая точность угловых и линейных измерений в П. установлены нормативно-техн. актами в зависимости от назначения геодезич. сетей. Для гос. геодезич. сетей и геодезич. сетей сгущения эти параметры регламентированы общесоюзными инструкциями, a для съёмочных сетей, городской П., маркшейдерских сетей на земной поверхности и в горн. выработках - соответствующими ведомственными техн. инструкциями. Полигонометрич. ходы, в к-рых углы измеряют техн. теодолитами, a длины сторон - стальными мерными лентами или рулетками, наз. теодолитными ходами.

Подробнее

Разработка и эксплуатация нефтяных и газовых месторождений

Отчет по практике пополнение в коллекции 28.10.2011

Подробнее

Отчет по геофизической практике

Отчет по практике пополнение в коллекции 08.09.2011

Магнитометр- (от греч. magnetis - магнит и... метр), прибор для измерения характеристик магнитного поля и магнитных свойств материалов. В зависимости от определяемой величины различают приборы для измерения: напряжённости поля (эрстедметры), направления поля (инклинаторы <http://slovari.yandex.ru/%7E%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%91%D0%A1%D0%AD/%D0%98%D0%BD%D0%BA%D0%BB%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80/> и деклинаторы <http://slovari.yandex.ru/%7E%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%91%D0%A1%D0%AD/%D0%94%D0%B5%D0%BA%D0%BB%D0%B8%D0%BD%D0%B0%D1%82%D0%BE%D1%80/>), градиента поля (градиентометры), магнитной индукции (тесламетры), магнитного потока (веберметры, или флюксметры <http://slovari.yandex.ru/%7E%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%91%D0%A1%D0%AD/%D0%A4%D0%BB%D1%8E%D0%BA%D1%81%D0%BC%D0%B5%D1%82%D1%80/>), коэрцитивной силы (коэрцитиметры <http://slovari.yandex.ru/%7E%D0%BA%D0%BD%D0%B8%D0%B3%D0%B8/%D0%91%D0%A1%D0%AD/%D0%9A%D0%BE%D1%8D%D1%80%D1%86%D0%B8%D1%82%D0%B8%D0%BC%D0%B5%D1%82%D1%80/>), магнитной проницаемости (мюметры), магнитной восприимчивости (каппа-метры), магнитного момента.

Подробнее

Проект создания плановых инженерно-геодезических сетей

Отчет по практике пополнение в коллекции 11.06.2011

Глобальная геодезическая сеть создается методами космической геодезии по материалам наблюдений искусственных спутников Земли (ИСЗ). Положение пунктов определяется в геоцентрической системе прямоугольных координат с началом в центре масс Земли, ось Z совпадает с осью вращения Земли, плоскость XZ - с плоскостью начального меридиана, ось 0Y дополняет систему до правой. Глобальную геодезическую сеть используют для решения научных и научно-технических задач геодезии, геофизики, астрономии и других наук. Например, для уточнения фундаментальных геодезических постоянных, изучения фигуры и гравитационного поля Земли, определения перемещения и деформации литосферных плит земной коры и т.п. Глобальная геодезическая сеть должна непрерывно совершенствоваться путем повышения точности определения координат ее пунктов, что необходимо для более эффективного решения традиционных и новых научных проблем геодезии и других наук.

Подробнее

Размещение теодолитного хода на местности

Отчет по практике пополнение в коллекции 21.02.2011

Электронный тахеометр 3Та5 (рис.17) предназначен для выполнения крупномасштабных топографических съемок, для создания планово-высотного обоснования, для выполнения исполнительных съемок застроенных и застраиваемых территорий, для автоматизированного решения различных инженерно-геодезических задач (определение координат невидимой точки объекта прямоугольной формы, вычисление площади земельного участка, определение недоступных расстояний, определение высоты недоступной точки, вынос запроектированной точки в натуру). Тахеометр может быть использован для измерения горизонтальных и вертикальных углов, получения полярных координат, горизонтальных проложений и превышений, вычисления прямоугольных координат и записи результатов измерений и вычислений в карту памяти объемом 1Мб (11000 пикетов). Средняя квадратическая ошибка измерения горизонтального угла одним приемом не превышает 5, вертикального угла или зенитного расстояния 7, наклонного расстояния- (5+310-6D) мм, где D- определяемое расстояние в мм. Диапазон измерения вертикального угла (угла наклона) +45…-45, зенитного расстояния 45-135, наклонного расстояния 2-1000 м с одной призмой, 2-2000 м с шестью призмами. Температурный диапазон работы от -20 до +50. Диапазон атмосферного давления 450-800 мм рт.ст. В комплект тахеометра входят: сам прибор с картой памяти, подставкой, оптическим центриром, дискетой, блоком контрольного отсчета (БКО), комплектом ЗиП, паспортом и инструкцией по эксплуатации; две вехи отражателя с уровнем, две подставки с оптическим центриром, три деревянных штатива, инструмент для измерения высоты прибора, состоящий из вехи с уровнем и трех переходников, два однопризменных отражателя, устанавливаемых на вехи отражателя, четыре источника питания (аккумуляторные батареи), обеспечивающих напряжение от 6,5 до 8,6 В, интерфейсный кабель для подключения к компьютеру, два разрядно-зарядных устройства, два переходника для подключения к клеммам аккумуляторной батарей, силовой кабель для подключения к разъемам на тахеометре, соединитель для подключения разрядно-зарядного устройства к питанию от автомобильного прикуривателя, понижающее устройство для питания тахеометра от источника постоянного тока с выходным напряжением от12 до 16 В, набор футляров, мешков и пакетов для транспортировки прибора. Масса собственно тахеометра 5,6 кг, однопризменного отражателя 0,5 кг, штатива 5,5 кг, вехи 1 кг. Габариты прибора 355190170 мм.

Подробнее
1 2 >