Статьи по предмету биология

Статьи по предмету биология

Особливості мозкового електрогенезу чоловіків і жінок із різним профілем слухової та мануальної асиметрії

Статья пополнение в коллекции 24.04.2018

Исследована мощность электроэнцефалограммы (ЭЭГ) 170 мужчин и женщин с правосторонним (ППА) и левосторонним профилями асимметрии (ЛПА) в состоянии функционального покоя. Установлена более низкая мощность аи высокая р-,у-колебаний ЭЭГ в коре у мужчин с ЛПА, по отношению к мужчинам с ППА. У левопрофильных женщин по сравнению с правопрофильными зарегистрировано более низкую мощность во всех диапазонах ЭЭГ. Выявлена более высокая мощность 9-, Р-, у-колебаний ЭЭГ и низкая в а-диапазоне у женщин с ППА, по сравнению с мужчинами из этой же группы. Установлено, что у левопрофильних женщин в половом аспекте изменения были более локальными и характеризовались болем низкой мощностью в а-, 9и высокой в Р-, у-диапазонах ЭЭГ.

Подробнее

Показники пам’яті, уваги та працездатності центральної нервової системи у осіб з територій посиленого радіоекологічного контролю Сумської області

Статья пополнение в коллекции 24.04.2018

Представлено результати дослідження показників об’єму короткочасної пам’яті, рівня переключення уваги та розумової працездатності у осіб, які проживають на територіях посиленого радіоекологічного контролю Сумської області. Волонтери з контамінованих територій мають достовірно вищий рівень об’єму короткочасної пам’яті на вербальний подразник. За рівнем переключення уваги досліджуваний контингент демонструє високий та вищий за середній рівні. Встановлено достовірні розбіжності між показниками коефіцієнту розумової продуктивності, об’єму зорової інформації та стійкості уваги у досліджуваній і контрольній групах.

Подробнее

Периодическая эволюция

Статья пополнение в коллекции 04.01.2012

Чижевский А.Л. [17], отметил периодичность популяции микроорганизмов. Наблюдается периодичность усыхания дубовых насаждений, повторяющиеся через 10-12 лет и особенно сильно через 25-30 лет [18, 19]. Отмечена периодичность численности зайца и рыси. Маслов С.Ю. [20] утверждает, что доминирование левого или правого полушария мозга в популяциях человека различно в различные исторические эпохи. Маслов С.Ю. проиллюстрировал это сменой архитектурных стилей. В математике обнаруживал периоды, когда ведущую роль играла последовательность строго логических, рассуждений, в которых каждый шаг был строго обоснован (функция левого полушария). Но в иные периоды возникало время интуиции (функция правого полушария), время гениальных догадок и эвристических рассуждений. Гумилев Л.Н. [21] писал, по сути, об этом же явлении, но о гармониках с большим периодом. Этим же явлением объясняется смена реалистичных наскальных рисунков периода палеолита схематично абстрактными рисунками в неолите (еще большая гармоника периодичности доминирования левого и правого полушария мозга). Демограф Зигфрид Коллер [22] утверждал, что следующие друг за другом поколения новорожденных не обладают, и не могут обладать одинаковой жизненной силой, есть более жизнеспособные когорты поколений и менее жизнеспособные. Четвериков С.С. [23] определил подобные явления как «волны жизни».

Подробнее

Ледниковые периоды. Что нас ждет в будущем

Статья пополнение в коллекции 28.11.2011

Как видно из уравнения, при поглощении шести молекул диоксида и шести молекул воды образовалось: одна молекула углевода, шесть молекул диоксида углерода. Общий объем газов практически не изменился. Это подтверждается и опытным путем. Поставим в банку горшок с цветком, закроем горлышко гибкой мембраной из резины. При росте этого цветка увеличивается масса листьев, но мембрана осталась на прежнем месте. Понаблюдаем более длительное время, когда в банке поглотится весь углекислый газ. Все равно пленка не прогнулась, что и доказывает, что давление газов неизменно при фотосинтезе. Чтобы доказать уменьшение углекислоты продолжим опыт: тот же самый цветок выставим на прямые солнечные лучи, при которых листья завянут от высокой температуры. Через некоторое время объем воздуха в банке увеличится из-за нагрева, но затем, прейдя в норму, он резко уменьшится. Пленка сильно прогнется внутрь. Аналогичный опыт можно сделать с листьями: положите в трехлитровую банку зеленые листья, закройте крышку резиновой пленкой. Когда листья увянут через несколько дней, объем воздуха в банке понизится, и пленка опять вогнется вовнутрь. Почему? Чтобы узнать какой газ исчез на превращение зеленой массы на мертвую массу, поднесем зажженную спичку внутрь банки - она сразу потухла, что показывает наличие углекислоты. Значит, при увядании осенью листьев происходит уменьшение атмосферы, при этом уничтожается кислород и выделятся двуокись углерода, но в меньшем количестве. Какие химические процессы при этом происходят? Этот вопрос можно адресовать физиологам растений, а нам важно понять, что при вымирании зеленой массы атмосфера уменьшается. Такое же уменьшение бывает при лесных пожарах. Это нетрудно доказать. Положите в банку несколько спичек без серы, предварительно также закрыв сверху банку гибкой пленкой, зажгите их.

Подробнее

Ледниковые периоды (новая гипотеза вымирания динозавров)

Статья пополнение в коллекции 18.11.2011

Как видно из уравнения, при поглощении шести молекул диоксида и шести молекул воды образовалось: одна молекула углевода, шесть молекул диоксида углерода. Общий объем газов практически не изменился. Это подтверждается и опытным путем. Поставим в банку горшок с цветком, закроем горлышко гибкой мембраной из резины. При росте этого цветка увеличивается масса листьев, но мембрана осталась на прежнем месте. Понаблюдаем более длительное время, когда в банке поглотится весь углекислый газ. Все равно пленка не прогнулась, что и доказывает, что давление газов неизменно при фотосинтезе. Чтобы доказать уменьшение углекислоты продолжим опыт: тот же самый цветок выставим на прямые солнечные лучи, при которых листья завянут от высокой температуры. Через некоторое время объем воздуха в банке увеличится из-за нагрева, но затем, прейдя в норму, он резко уменьшится. Пленка сильно прогнется внутрь. Аналогичный опыт можно сделать с листьями: положите в трехлитровую банку зеленые листья, закройте крышку резиновой пленкой. Когда листья увянут через несколько дней, объем воздуха в банке понизится, и пленка опять вогнется вовнутрь. Почему? Чтобы узнать какой газ исчез на превращение зеленой массы на мертвую массу, поднесем зажженную спичку внутрь банки - она сразу потухла, что показывает наличие углекислоты. Значит, при увядании осенью листьев происходит уменьшение атмосферы, при этом уничтожается кислород и выделятся двуокись углерода, но в меньшем количестве. Какие химические процессы при этом происходят? Этот вопрос можно адресовать физиологам растений, а нам важно понять, что при вымирании зеленой массы атмосфера уменьшается. Такое же уменьшение бывает при лесных пожарах. Это нетрудно доказать. Положите в банку несколько спичек без серы, предварительно также закрыв сверху банку гибкой пленкой, зажгите их. После остывания, вы увидите, что пленка вогнется внутрь. Следовательно, при отмирании листьев и сжигании древесины в герметично закрытом пространстве объем газов уменьшился. Вывод: при сжигании клетчатки поглощается больше кислорода, чем выделяется углекислоты. Вы, наверно замечали, как меняется настроение в осенних рощах и около костров: очевидно выделившийся углекислый газ оказывает успокаивающее действие на нервную систему. Но при сгорании древесины и высушенных листьев не весь углерод, входивший в химический состав клетчатки, превратился в углекислоту, а остался в виде золы. Зола - это чистый углерод, который ранее был в атмосфере в молекуле двуокиси углерода.

Подробнее

Живой свет морей

Статья пополнение в коллекции 21.03.2011

Некоторые кораллы без жгутиковых развиваются значительно хуже, другие не могут существовать вообще. Такая дружба, по подсчетам специалистов, длится уже не менее 200 млн лет. Есть у кораллов и другие приятели. Например, азотом их могут снабжать еще и синезеленые водоросли, и бактерии. Теперь становится понятным, почему мадрепоровые кораллы так чувствительны к свету, он нужен для фотосинтеза. Это подтверждается еще и тем, что лишь киноварно-красный коралл Tubastrea, в клетках которого не обнаружили симбионтов, предпочитает затененные участки рифа. С другой стороны, фотосинтез у S. microadriaticus замедляется при температуре выше 30 °C и совсем прекращается при 34 °С. Повышение средней температуры в среде обитания кораллов, наблюдаемое в последнее время, приводит к гибели их симбионтов, за которой следуют обесцвечивание, болезнь и гибель самих кораллов.

Подробнее

Преимущества и недостатки способов очистки коксового газа от сероводорода

Статья пополнение в коллекции 20.03.2011

На опытной установке УХИНа исследовали процесс очистки коксового газа от сероводорода щелочным раствором комплексоната железа с высокой сероемкостью [7]. Этот процесс обеспечивает глубокую очистку газа от сероводорода, прост по аппаратурному оформлению абсорбционной части. В то же время необходимо обеспечить процесс комплексонато.м железа (трилон Б) и упростить узлы переработки раствора. На украинских заводах с действующими одноступенчатыми установками экономически целесообразна реконструкция их на двухступенчатую схему, которая обеспечит относительную экономию капитальных и эксплуатационных затрат за счет общецехового хозяйства, коммуникаций, хранилищ и т. д. На отдельных заводах это позволит снизить удельные капитальные затраты на 20 30 % (до 11 12 руб/1000 м3 газа). Кроме того, вакуум-карбонатный способ обеспечивает возможность снижения текущих издержек при использовании вместо пара тепла прямого коксового газа. Например, применение вторичного тепла коксового газа в цехе сероочистки № 2 Авдеевского завода позволило снизить эксплуатационные расходы на 0, 85 руб/1000 м , а для двухступенчатой вакуум-карбонатной сероочистки Криворожского завода, по проектным данным, обеспечит снижение текущих издержек с 4, 3 до 2, 8 руб/1000 м3.

Подробнее

Строение клеток прокариот и эукариот

Статья пополнение в коллекции 20.03.2011

Основным компонентом мембранных органоидов является мембрана. Биологические мембраны построены по общему принципу, но химический состав мембран разных органоидов различен. Все клеточные мембраны это тонкие пленки (толщиной 710 нм), основу которых составляет двойной слой липидов (бислой), расположенных так, что заряженные гидрофильные части молекул соприкасаются со средой, а гидрофобные остатки жирных кислот каждого монослоя направлены внутрь мембраны и соприкасаются друг с другом (рис. 3). В бислой липидов встроены молекулы белков (интегральные белки мембраны) таким образом, что гидрофобные части молекулы белка соприкасаются с жирнокислотными остатками молекул липидов, а гидрофильные части экспонированы в окружающую среду. Кроме этого часть растворимых (немембранных белков) соединяется с мембраной в основном за счет ионных взаимодействий (периферические белки мембраны). Ко многим белкам и липидам в составе мембран присоединены также углеводные фрагменты. Таким образом, биологические мембраны это липидные пленки, в которые встроены интегральные белки.

Подробнее

Пути улучшения показателей сатураторной схемы получения сульфата аммония

Статья пополнение в коллекции 19.03.2011

На большинстве коксохимических заводов Украины и стран СНГ применяется сатураторный метод производства сульфата аммония из аммиака коксового газа. Особенность этого метода состоит в том, что процессы абсорбции аммиака и образования кристаллов сульфата аммония осуществляется в одном аппарате сатураторе. При барботаже газа через насыщенный раствор сульфата аммония, содержащий 4-6% свободной серной кислоты, аммиак поглощается с образованием сульфата аммония, в результате чего его концентрация становится выше равновесной (пересыщенное состояние раствора) и происходит образование кристаллов.

Подробнее

Коллективные амебы и иммунология

Статья пополнение в коллекции 18.03.2011

Геномный подход позволил установить причины такого «альтруизма» амеб. Дело в том, что далеко не все клетки могут кооперироваться. Для этого они должны обладать белками, обеспечивающими распознавание на молекулярном уровне и слипание (адгезию) узнавших друг друга клеток. Специалистам Института им. Райса (Хьюстон, США), удалось выделить ген распознавания и контактирования, кодирующий белок CAP (cell adhesion protein белок клеточной адгезии).

Подробнее

Клетка единая, но делимая

Статья пополнение в коллекции 18.03.2011

Один из конкретных механизмов такого рода связан с микротрубочками. Напомню еще раз, что в целой клетке микротрубочки растут радиально из центросомы, расположенной около ядра, при этом каждая микротрубочка имеет два конца: центральный минус-конец и периферический плюс-конец. Хотя в отрезанном фрагменте центра нет, микротрубочки в нем перераспределяются, образуя радиальную систему с плюс-концами в центре фрагмента и минус-концами на периферии (см. рис. 1). Механизм этого перераспределения был недавно проанализирован Родионовым и Бориси. Эти исследователи приготовили фрагменты из пигментных клеток (меланоцитов) кожи черных аквариумных рыбок. Дело в том, что эти клетки содержат в цитоплазме множество черных пигментных гранул, за движениями которых легко наблюдать в культуре. Во фрагментах цитоплазмы таких клеток пигментные гранулы при самоорганизации скапливались в центре, а микротрубочки расходились радиально из центра на периферию. В нормальной клетке различные органеллы, в том числе пигментные гранулы, двигаются при помощи специальных связанных с микротрубочками моторных молекул, динеинов и кинезинов. При этом динеины двигают органеллы к минус-концу микротрубочки, а кинезины к плюс-концу. Оказалось, что, применив специальный ингибитор, угнетающий действие динеина, можно подавить самоорганизацию микротрубочек и гранул во фрагменте. Ингибиторы кинезинов оказались неэффективными. Таким образом, перемещение гранул и минус-концов микротрубочек в центр фрагмента оказалось результатом их перемещений, осуществляемых при помощи динеина (рис. 3). Эта работа Родионова и Бориси доказала реальное существование по крайней мере одного зависимого от цитоскелета механизма самоорганизации. Однако известно, что элементы самоорганизации во фрагментах могут сохраняться даже после деполимеризации микротрубочек. Поэтому весьма вероятно, что существуют и другие механизмы, зависимые от других цитоскелетных структур микрофиламентов.

Подробнее

Разработка и исследование процесса выделения нафталина и других летучих веществ из конденсата вакуум-содовой сероочистки

Статья пополнение в коллекции 15.03.2011

Очищенный таким образом конденсат целесообразно использовать в качестве теплоносителя в цикле "первичные газовые холодильники регенераторы сероочистки" вместо поглотительного раствора. Такая замена позволит уменьшить интенсивность процессов образования балластных солей в поглотительном растворе и коррозии трубопроводов, а также увеличить эффективность теплообмена в первичных газовых холодильниках. В настоящее время в цехе сероочистки №2 Авдеевского коксохимического завода заканчивается монтаж опытно-промышленной установки для десорбции сероводорода, цианида водорода и летучих органических веществ из барометрического конденсата, на которой будут продолжены исследования процесса. Таким образом, выполненные в лабораторных и производственных условиях исследования показали, что нафталин и смолистые вещества, улавливаемые при промывке коксового газа в скрубберах содовым раствором, могут быть эффективно выделены из системы путем отстаивания барометрического конденсата перед его смешиванием с регенерированным раствором. Даже при сравнительно высокой температуре коксового газа в серных скрубберах (5055°С) количество органической фазы, выделяемой из барометрического конденсата в сепараторе, составляет 2025 % от содержания нафталина и смолистых веществ в коксовом газе. При более низких температурах коксового газа в скрубберах из него может быть выделено 60 70 % нафталина и смолистых веществ.

Подробнее

Протеомика

Статья пополнение в коллекции 14.03.2011

Другой пример: на рис. 13 приведены аминокислотные последовательности очень похожих молекул, которые также объединены в структурно-гомологичное семейство. Эти молекулы обнаружены у весьма эволюционно далеких живых организмов от насекомых до млекопитающих. В первой строке дана первичная структура брадикинина, содержащего 9 аминокислотных остатков и встречающегося у многих высших организмов, в том числе и у человека. В течение многих лет химики синтезировали различные неприродные аналоги этой молекулы, чтобы ответить на вопрос, какой ее участок ответственен за взаимодействие с рецептором. Около 30 лет назад были даже синтезированы все возможные фрагменты брадикинина 8 дипептидов, 7 трипептидов и т.д. (всего возможны 36 фрагментов), величину активности которых затем испытывали в одном и том же биологическом тесте. Результат оказался тривиальным: выяснилось, что максимальную активность проявляет лишь вся молекула целиком, а каждый фрагмент по отдельности обладает либо следовой активностью, либо нулевой. Эту трудоемкую работу не пришлось бы делать, если бы в то время были известны другие брадикинины, приведенные на рис. 13, и средствами биоинформатики они были бы выделены из глобального протеома. Представленное структурно-гомологичное семейство наглядно демонстрирует, что у всех молекул есть область, которая в результате биологической эволюции практически не изменялась (квазиконсервативная область), и она представляет собой молекулу брадикинина высших живых организмов, отобранную как наиболее совершенную в результате эволюционного процесса. Данный пример демонстрирует, что протеомика вместе с биоинформатикой позволяет быстро (и дешево) решать принципиальные научные проблемы.

Подробнее

Об основах теории интегративно-структурных слоев материи

Статья пополнение в коллекции 08.03.2011

На основании вышеизложенного, следуя далее согласно логики теории интегративно-структурных слоев материи, можно сделать вывод о том, что атомы химических элементов являют собой в своей системной последовательности от первого до последнего "полимеры", закрученные в замкнутую спираль, а говоря электротехническим языком, замкнутые электрические (электронные) цепи, составленные из элементарных частей, обладающих электрическими свойствами, в общем и целом это электронные схемы, то есть атомы химических элементов это α-процессоры, а соединения их β-процессоры, но конечно же, процессоры особого рода. См. подробнее об этом работы восемнадцатилетнего русского гения Олега Лосева. В свою очередь, эти атомные спиралевидные замкнутые электрические (электронные) цепи-полимеры силой внутренних естественных сил скручены в глобулы клубки шарообразной формы, которые с легкой руки древнегреческих философов Левкиппа и Демокрита в V в. до н.э. получили название "атом", "атомы", то есть "не разрезаемые ножницами, не разбиваемые молотком" тончайшие тела. Поэтому солнечно-планетарная модель для электронно-протонных схем атомов химических элементов сегодня совершенно негодна. Атомы слоя материи М.В.Ломоносова получают энергию из окружающего их пространства, потому они подвижны, или, как говорили древние греки, "духовны", "интеллектуальны", т.е "живые". Все в этом слое материи движется, производит согласно своих электронных ("интеллектуальных") свойств, некоторые действия, то есть живет. Ответ на этот вопрос дали русские ученые А.С.Попов и О.В.Лосев (создал в 1922 г. первый на минерале цинкит транзисторный радиоприемник из шести деталей, который работал от радиоволн, принимаемых им в процессе включения его системы в мировую беспроводную "радиоволновую энергетическую цепь", то есть работал без источника энергии (питания) типа аккумулятор и пр. Вновь вспомним слова Лукреция: один атом (химического элемента В.С.) "плакать и смеяться не будет". Для того, чтобы это произошло необходимо, чтобы они, то есть атомы по Лукрецию, соединились с другими атомами в замкнутую цепь, но естественно, не со всякими, а с обладающими транзисторными и иными "процессорными" свойствами, составляющими работающую систему. Только тогда альфа- и бета-процессоры, сконструированные из атомов химических элементов, превращаются в нанопроцессоры соединения особых атомов химических элементов. То есть атомы химических элементов и их соединения представляют собой электрическое, точнее электронное устройство, основной движущей подсистемой которого является электрический, точнее электронный колебательный контур. Отсюда, естествен вывод о том, что построения квантовой механикой структур атомов химических элементов, их электронных конфигураций по образу и подобию солнечно-планетарной системы, мягко говоря, неверны, или, лучше сказать совсем неверны. Как говорил в недавние годы американский физик-теоретик, создатель т.н. третьей формы квантовой механики, в виде функциональных интегралов по траекториям (1948), лауреат Нобелевской премии (с 1965 г.) Р.Фейнман (1918-1988): "Сегодня в мире нет человека, который бы понимал современную квантовую механику".

Подробнее

Вещества, из которых состоят растения

Статья пополнение в коллекции 25.02.2011

Липиды, содержащиеся в растениях, могут находиться в них в форме запасного жира или являться структурным компонентом протопласта клеток. Запасные и «структурные» жиры выполняют различные биохимические функции. Запасной жир откладывается в определенных органах растений, чаще всего в семенах, и используется при их хранении и прорастании в качестве питательного вещества. Липиды протопласта являются необходимой составной частью клеток и содержатся в них в постоянных количествах. Из липидов и соединений липидной природы (комбинаций с белками липопротеинов, углеводами гликолипидов) построены цитоплазматическая мембрана на поверхности клеток и мембраны клеточных структур митохондрий, пластид, ядра. Благодаря мембранам регулируется проницаемость клеток для различных веществ. Количество мембранных липидов в листьях, стеблях, плодах, корнях растений обычно достигает 0, 10, 5% от веса сырой ткани. Содержание запасного жира в семенах разных растений различно и характеризуется следующими величинами: у ржи, ячменя, пшеницы 23%, хлопчатника, сои 2030% (рис. 4).

Подробнее

Эволюция и свечение организмов

Статья пополнение в коллекции 25.02.2011

С другой стороны, в умеренных количествах АФК продуцируются в любом живом аэробном организме благодаря специальным ферментам, не связанным с процессом дыхания в митохондриях. АФК в низкой концентрации необходимы во многих жизненно важных процессах. Так, эти формы секретируются в импульсном режиме фагоцитами и некоторыми другими клетками для уничтожения паразитических микроорганизмов. АФК участвуют в регуляции клеточного деления, оплодотворения яйцеклетки, а также в запуске «запрограммированной смерти» клеток (апоптоза), в управлении тонусом кровеносных сосудов и т.д. Недавно мы обнаружили, что клетки поверхности ряда водных многоклеточных животных, подобно фагоцитам, тоже выделяют АФК, вероятно, для защиты от гнилостной микрофлоры. Природными (абиогенными) источниками АФК служат ионизирующая радиация, фото- и электрохимические реакции в воде. В частности, АФК образуются при фотолизе воды под действием УФ-излучения.

Подробнее

Методы исследований пресноводного зоопланктона

Статья пополнение в коллекции 25.02.2011

Планктонные животные образуют зоопланктонное сообщество, характеризующееся определенным видовым составом и соотношением численности разных видов и представителей разных экологических групп. По изменению этих характеристик в ряде случаев можно судить об изменении условий в водоеме: о чрезмерном увеличении численности рыб, изменении химического состава воды (например, ее закислении) и т.д. Однако это возможно только в том случае, если есть материал для сравнения. Кроме того, условия в водоеме и структура сообщества закономерно меняются в течение года. Например, если приехать в пустыню Сахара весной, то можно сделать вывод, что природные условия этого региона крайне благоприятны для выращивания фруктов: там тепло и достаточно влаги. Однако через месяц пустыня станет безжизненной...

Подробнее

Бионика – синтез биологии и техники

Статья пополнение в коллекции 22.02.2011

Снегоходная машина, имитирующая принцип передвижения пингвинов по рыхлому снегу, была разработана в Горьковском политехническом институте под руководством А.Ф. Николаева. Пингвины передвигаются по снегу, отталкиваясь ластами, подобно лыжникам, использующим для этой цели палки. Основанная на этом принципе снегоходная машина «Пингвин», лежа на снегу широким днищем, способна двигаться со скоростью до 50 км/ч. В подобных машинах нуждаются исследователи Арктики и Антарктиды, а также жители наших северных регионов охотники, оленеводы и т.д. Здесь тягачи, тракторы и снегоходы при своем движении по снегу образуют глубокую колею, буксуют и увязают. Подобные машины могут использоваться и на мелководных озерах, где обычные плавсредства чаще всего не могут применяться.

Подробнее

Опыты со смесью Армстронга

Статья пополнение в коллекции 19.02.2011

Сначала приготовьте раствор желатина, для чего в 6 мл воды размешайте 0.1 г мелкого порошка желатина и оставьте его для набухания на час, затем при нагревании на водяной бане, помешивая палочкой, полностью растворите желатин. После этого отмерьте на отдельных листках измельченные порошки бертолетовой соли и фосфора. В небольшую емкость (удобна небольшая полиэтиленовая крышка от аптечного пузырька с гладкими стенками) насыпьте бертолетову соль, смочите ее полученным раствором желатина размешайте деревянной палочкой (спичкой или зубочисткой) до образования кашицы. Затем добавьте фосфор и аккуратно, но тщательно, размешайте, если вы добавили мало раствора желатина добавьте еще. Должна получиться однородная смесь густой консистенции (как зубная паста). Затем на полоску картона наклейте скотч, а на его поверхность палочкой наносите капли смеси (чтобы получались ровные капельки, на расстоянии сантиметра друг от друга). Размер их выбирайте исходя из целей использования для щелчка пальцев половина спичечной головки, для иных «взрывов» можно больше, но не более 2-3 спичечных головок, иначе будет слишком сильный звук при взрыве. Сушите в течение суток, полосу можно положить на батарею отопления. После высыхания такие «капли» представляют собой довольно плотную массу, напоминающую спичечные головки, чтобы отделить их, осторожно отрежьте ножницами кусочек ленты с каплей, затем аккуратно изогните края, капля отделится. Хранить «полоску пистонов» можно в коробке между слоями ваты. Смесь устойчива к длительному хранению, у меня хранилась в сухом месте в течение полугода без потери свойств. Отделенную застывшую каплю можно очень осторожно взять пальцами, но лучше использовать кусочки бумаги.

Подробнее

Популяционная экология большой синицы, Parus major в таежных лесах Приладожья

Статья пополнение в коллекции 07.02.2011

Известно, что на динамику популяции большой синицы, как и многих других птиц, влияет комплекс факторов, как эндогенных, таких как плотность-зависимые продуктивность размножения, смертность молодых и взрослых птиц, эмиграция и иммиграция, так и экзогенных состояние кормовой базы, погодные условия и т.д. Сложное взаимодействие этих факторов по-разному отражается на изменении численности отдельных популяций и делает невозможным построение единой универсальной модели (Kluyver, 1951, Лэк, 1957, 1966, Wynne-Edwards, 1962, Наумоув. 1963, Haartman, 1971, Паевский, 1985 и др.). Изучение оседлой популяции в южной Англии в лесу близ Оксфорда показало, что основной причиной ежегодных колебаний гнездового населения здесь была динамика выживаемости первогодков (Lack, 1964, 1966, Perrins, 1965). Она практически не зависела от зимней погоды и отчетливо коррелировала лишь с урожаем буковых орешков, хотя основной отход происходил в первые месяцы жизни до перехода птиц на этот вид корма. Это связывали с тем, что урожай бука мог совпадать с плодоношением других видов деревьев, с благоприятной погодой и с обилием насекомых. В меньшей степени на динамику гнездового населения влияла выживаемость взрослых птиц, а плотность-зависимая продуктивность размножения и соотношение эмиграции и иммиграции не сказывались вовсе. Кребс (Krebs, 1970) подтвердил основные заключения Лэка и Перринса и сделал вывод, что слабо зависящая от плотности и территориального поведения зимняя смертность первогодков и взрослых птиц - ключевой фактор, определяющий динамику обследуемой популяции. Позднее Кломп (Klomp, 1980), не оспаривая этого утверждения, показал, что в лесу Марлей у Оксфорда зависимая от плотности продуктивность размножения играет важную роль в стабилизации численности синиц. Влияние погоды на динамику этой популяции, по мнению Лэка (1964, 1966) и Перринса (1965) было незначительным и проявлялось только в необычно холодные зимы 1946-47 и 1966-67 гг. с длительным залеганием снега. Однако, как показал анализ их материалов с привлечением большего числа погодных факторов, плотность гнездового населения коррелировала с зимними и ранне-весенними температурами воздуха: среднемесячными февральскими (Krebs, 1970), за период с конца января до середины апреля, и наиболее значимо, - за период с 11 по 30 марта (Slagsvold, 1975d). В других частях Британии на динамику численности синиц влияли ноябрьские температуры (OConnor, 1980). Подробный анализ более продолжительных рядов данных по популяции у Оксфорда показал, что ее динамика зависит от зимних и ранне-весенних температур воздуха, от урожая бука, а также и от плотности населения предшествующего года (Lebreton, 1990).

Подробнее
1 2 3 4 5 > >>