Радиоэлектроника

Радиоэлектроника

KURS

Информация пополнение в коллекции 12.01.2009

Ðåãèñòð ÎÝÂÌ R2 áóäåò õðàíèòü çíà÷åíèÿ Uóïð, â R3 ïîìåùàþòñÿ çíà÷åíèÿ ïðåäûäóùåãî øàãà Uk-1, à â A (àêêóìóëÿòîð) çíà÷åíèÿ ïîñëåäóþùåãî øàãà Uk.  R4 â ïðîöåññå ðàáîòû ïðîãðàììû áóäåì ïîìåùàòü òîëüêî N ïàðàìåòð ïðîãðàììíîé çàäåðæêè.  B áóäåò õðàíèòüñÿ êîëè÷åñòâî øàãîâ äëÿ ïðîãîíà âñåé îáëàñòè íàñòðîéêè. Âûáèðàåì N=135, ò.ê âðåìÿ ïðîãðàììíîé çàäåðæêè ðàâíî 400 ìêñ, à âñÿ ïðîöåäóðà ðåàëèçóåòñÿ â 3 öèêëà, .

Подробнее

Волоконно-оптические системы

Информация пополнение в коллекции 12.01.2009

Íà ðèñ.1.13 ïðåäñòàâëåíà ñòðóêòóðíàÿ ñõåìà îïòè÷åñêîãî ïåðåäàò÷èêà (ÎÏ) ñ ïðÿìîé ìîäóëÿöèåé íåñóùåé. Ïðåîáðàçîâàòåëü êîäà ÏÊ ïðåîáðàçóåò ñòûêîâîé êîä, â êîä, èñïîëüçóåìûé â ëèíèè, ïîñëå ÷åãî ñèãíàë ïîñòóïàåò íà ìîäóëÿòîð. Ñõåìà îïòè÷åñêîãî ìîäóëÿòîðà èñïîëíÿåòñÿ â âèäå ïåðåäàþùåãî îïòè÷åñêîãî ìîäóëÿ (ÏÎÌ), êîòîðûé ïîìèìî ìîäóëÿòîðà ñîäåðæèò ñõåìû ñòàáèëèçàöèè ìîùíîñòè è ÷àñòîòû èçëó÷åíèÿ ïîëóïðîâîäíèêîâîãî ëàçåðà èëè ñâåòîèçëó÷àþùåãî äèîäà. Çäåñü ìîäóëèðóþùèé ñèãíàë ÷åðåç äèôôåðåíöèàëüíûé óñèëèòåëü ÓÑ-1 ïîñòóïàåò â ïðÿìîé ìîäóëÿòîð ñ èçëó÷àòåëåì (ÌÎÄ). Ìîäóëèðîâàííûé îïòè÷åñêèé ñèãíàë èçëó÷àåòñÿ â îñíîâíîå âîëîêíî ÎÂ-1. Äëÿ êîíòðîëÿ ìîùíîñòè èçëó÷àåìîãî îïòè÷åñêîãî ñèãíàëà èñïîëüçóåòñÿ ôîòîäèîä (ÔÄ), íà êîòîðûé ÷åðåç âñïîìîãàòåëüíîå âîëîêíî ÎÂ-2 ïîäàåòñÿ ÷àñòü èçëó÷àåìîãî îïòè÷åñêîãî ñèãíàëà. Íàïðÿæåíèå íà âûõîäå ôîòîäèîäà, îòîáðàæàþùåå âñå èçìåíåíèÿ îïòè÷åñêîé ìîùíîñòè èçëó÷àòåëÿ, óñèëèâàåòñÿ óñèëèòåëåì ÓÑ-2 è ïîäàåòñÿ íà èíâåðòèðóþùèé âõîä óñèëèòåëÿ ÓÑ-1. Òàêèì îáðàçîì, ñîçäàåòñÿ ïåòëÿ îòðèöàòåëüíîé îáðàòíîé ñâÿçè, îõâàòûâàþùàÿ èçëó÷àòåëü. Áëàãîäàðÿ ââåäåíèþ ÎÎÑ îáåñïå÷èâàåòñÿ ñòàáèëèçàöèÿ ðàáî÷åé òî÷êè èçëó÷àòåëÿ. Ïðè ïîâûøåíèè òåìïåðàòóðû ýíåðãåòè÷åñêàÿ õàðàêòåðèñòèêà ëàçåðíîãî äèîäà ñìåùàåòñÿ (ðèñ.1.14), è ïðè îòêëþ÷åííûõ öåïÿõ ñòàáèëèçàöèè ìîùíîñòè óðîâåíü îïòè÷åñêîé ìîùíîñòè ïðè ïåðåäà÷å «0» (Ð0) è ïðè ïåðåäà÷å «1» (Ð1) óìåíüøàþòñÿ, ðàçíîñòü òîêà ñìåùåíèÿ Iá è ïîðîãîâîãî òîêà Iï óâåëè÷èâàåòñÿ, à ðàçíîñòü Ð1-Ð0 óìåíüøàåòñÿ. Ïîñëå âðåìåíè óñòàíîâëåíèÿ ïåðåõîäíûõ ïðîöåññîâ â öåïÿõ ñòàáèëèçàöèè óñòàíàâëèâàþòñÿ íîâûå çíà÷åíèÿ Iá è Iï è âîññòàíàâëèâàþòñÿ ïðåæíèå çíà÷åíèÿ Ð1-Ð0 è Ðñð. Äëÿ óìåíüøåíèÿ òåìïåðàòóðíîé çàâèñèìîñòè ïîðîãîâîãî òîêà â ïåðåäàþùåì îïòè÷åñêîì ìîäóëå èìååòñÿ ñõåìà òåðìîêîìïåíñàöèè (ÑÒÊ), ïîääåðæèâàþùàÿ âíóòðè ÏÎÌ ïîñòîÿííóþ òåìïåðàòóðó ñ çàäàííûì îòêëîíåíèåì îò íîìèíàëüíîãî çíà÷åíèÿ. Ñîâðåìåííûå ìèêðîõîëîäèëüíèêè ïîçâîëÿþò ïîëó÷àòü îòêëîíåíèÿ íå áîëåå òûñÿ÷íûõ äîëåé ãðàäóñà.

Подробнее

Автоматическая коммутация

Информация пополнение в коллекции 12.01.2009

Устройства станционной сигнализации предназначены для контроля действия приборов АТС и создания оптических и акустических сигналов при их повреждениях или неправильной работе. По степени важности различают следующие виды сигналов: аварийные, групповые и отдельные. К аварийным относятся сигналы, вызванные перегоранием предохранителей: рядового, стативных СВУ, МГ, КП, КСА, ПЭУ, АОН, АК-АВ, платы маркера АК-АВ. Групповые сигналы появляются при перегорании всех стативных предохранителей на 6 А, индивидуальных на платах маркеров АИ-СД, ГИ, ГИК, РИА и на стативе УЗПИ, предохранителя МКС, а также при блокировках маркера АИ-СД, ГИ, ГИК, РИА, РИВ, нарушении работы МКПП, электронных регистров или неисправности в цепях вызывного тока. Отдельные сигналы возникают при перегорании индивидуальных предохранителей приборов, блокировке комплектов РСЛ, безотбойности абонентских устройств. Наиболее важные оптические сигналы сопровождаются непрерывным акустическим сигналом (звонком), остальные прерывистым звонком. Сигналы одного вида появляются немедленно после повреждения, другие, например сигнал о безотбойности абонентской линии, с выдержкой во времени.

Подробнее

Исследование реакции нижней ионосферы на высыпание энергичных частиц из радиационных поясов Земли

Информация пополнение в коллекции 12.01.2009

В настоящее время надежно установлено, что Земля и ее магнитное поле погружены в непрерывно текущий поток плазмы солнечного происхождения солнечный ветер. Солнечный ветер, который представляет собой расширение солнечной короны со сверхзвуковой скоростью, несет с собой в космическое пространство магнитное поле Солнца. Магнитное поле Земли взаимодействует с плазмой солнечного ветра, и на геоцентрическом расстоянии примерно между Землей и Солнцем образуется ударный фронт. Основной поток солнечного ветра обтекает Землю и уносит геомагнитное поле в длинный магнитный хвост. Следовательно, Земля окружена магнитной полостью магнитосферой, строение и свойства которой определяются главным образом магнитным полем земли и токами, генерируемыми солнечным ветром. Считают, что частицы солнечного ветра попадают в атмосферу либо через магнитный хвост, либо через полярные каспы с низкой напряженностью магнитного поля, расположенные на дневной стороне Земли. Как известно в магнитосфере протекает множество физических процессов. Многие из них, косвенно связанные с такими давно известными явлениями, как полярные сияния (высыпание частиц в полярных широтах), и магнитные бури, прямо или косвенно обусловлены взаимодействием солнечного ветра и магнитосферы Земли.

Подробнее

Выходные каскады в режиме В

Информация пополнение в коллекции 12.01.2009

В усилителях, предназначенных для усиления гармонических сигналов различных частот, а также в усилителях импульсных сигналов обеих полярностей использование режима В возможно лишь в двухтактной схеме. При этом одно плечо двухтактной схемы работает в течение положительного полупериода сигнала, другое в течение отрицательного полупериода и форма сигнала на нагрузке при прямолинейной динамической характеристике не отличается от формы эдс источника сигнала. В практических условиях вследствие непрямолинейности динамической характеристики и неодинаковости параметров усилительных элементов в плечах схемы режим В в двухтактной схеме дает нелинейные искажения как по четным, так и по нечетным гармоникам. Коэффициент гармоник в режиме В выше, чем в режиме А, вследствие использования большего участка статической характеристики усилительного элемента, включая ее криволинейную нижнюю часть.

Подробнее

ПРОЕКТИРОВАНИЕ И КОНСТРУИРОВАНИЕ СВЧ ИНТЕГРАЛЬНЫХ УСТРОЙСТВ

Информация пополнение в коллекции 12.01.2009

Система автоматизирует решение следующих задач: технологический анализ чертежа с определением возможности обработки данной детали в условиях функционирования ГПС конкретной конфигурации; выбор рациональных видов и способов получения заготовки; компоновку ТП по этапам, выделение множества элементов, обрабатываемых на каждом этапе, и сравнение вариантов принципиальных схем ТП по экономическим критериям; выбор оборудования для выполнения каждого этапа; выбор маршрута обработки детали внутри этапа ТП; выбор системы оборудования и закрепления заготовки и модели оборудования на каждой операции; проектирование вариантов общего маршрута ТП с объединением операций по общности обрабатываемых элементов и поверхностей вращения, принятых в качестве баз; проведение размерного анализа для элементов поверхности вращения с учетом принятых в качестве баз или с учетом принятых в качестве баз плоскостей и требований взаимного расположения; назначение и анализ определенных линейных размеров с минимизацией состава технологических размерных цепей, замыкающими звеньями которых служат конструкторские размеры и припуски; определение излишеств, допусков и отклонений операционных линейных размеров посредством технологического размерного анализа, который в ходе проектирования маршрута изготовления детали обеспечивает назначение операционных размеров и оценку возможности их реализации на настроенном оборудовании автоматически; формирование инструментальных наладок и составление расчетно-технологических карт для операции, на которых применяются станки с ЧПУ; расчет режимов обработки и норм времени по операциям ТП; расчет себестоимости изготовления детали по вариантам и выбор из них варианта, имеющего минимальную себестоимость при заданной производительности; проектирование и выпуск управляющих программ для станков с ЧПУ с использованием САПР, например типа «Техран»; расчет накладок управляющих кулачков для токарно-револьверных автоматов с использованием систем RAKTA, RASKUL; печать технологической документации (маршрутных и операционных карт).

Подробнее

Вычисление элементарных функций

Информация пополнение в коллекции 12.01.2009

Способ уменьшения интервала изменения аргумента зависит от свойств функции. Если функция периодическая, то имеет смысл вычислять ее только на одном периоде изменения аргумента. Если функция симметричная, то это свойство также можно использовать для уменьшения интервала. Существует распространенный прием уменьшения диапазона изменения аргумента, который основывается на использовании теорем сложения и умножения элементарных функций. Одним из наиболее простых и универсальных приемов является разбиение всего диапазона изменения на ряд интервалов (сегментная аппроксимация). Обычно аргумент приводят к интервалу [- 1, 1 ] или [ 0, 1]. Такой выбор объясняется наилучшей изученностью поведения функции на этих интервалах, возможностью работы в режиме с фиксированной точкой, наличием точки нуль, которая для многих функций является осью симметрии, и тем, что на данных отрезках существуют ортогональные многочлены.

Подробнее

Аналіз перетворень сігналів

Информация пополнение в коллекции 12.01.2009

кГц00ВИД А3,056,50,90360,20ФМ-41E80,101ВИД Б1,28120,95310,25АФМ-84E90,0502ВИД В2,52,52,40,97380,30ФМ-83E70,203ВИД А0,156,50,99420,35КАМ-162E90,2504ВИД Б0,35,58,00,90420,40ФМ-42E80,305ВИД В0,522,40,95440,20АФМ-81E70,106ВИД А0,732,70,97400,25ФМ-83E90,0507ВИД Б0,943,50,99370,30КАМ-164E90,208ВИД В1,22,5500,90500,35ФМ-42E80,2509ВИД А1,53,52,50,95390,40АФМ-84E80,310ВИД Б1,84,5120,97360,20ФМ-82E90,111ВИД В2,03350,99380,25КАМ-163E90,0512ВИД А2,54,5140,90420,30ФМ-49E90,213ВИД Б2,86,5180,95330,35АФМ-85E90,2514ВИД В3,02,5800,97440,40ФМ-81E80,315ВИД А0,2712,50,99390,20КАМ-165E91,016ВИД Б0,48150,90370,25ФМ-42E90,0517ВИД В0,621,60,95500,30АФМ-84E70,218ВИД А0,83,54,50,97450,35ФМ-81E80,2519ВИД Б1,04,57,00,99360,40КАМ-163E90,320ВИД В1,130,80,90380,20ФМ-45E70,121ВИД А1,35,57,50,95420,25АФМ-82E90,0522ВИД Б1,46,59,50,97370,30ФМ-84E90,223ВИД В1,62100,99440,35КАМ-166E80,2524ВИД А2,24,5110,90420,40ФМ-42E80,325ВИД Б2,46,58,50,95330,20АФМ-84E90,126ВИД В2,62,50,10,97500,25ФМ-81E70,0527ВИД А1,93,52,50,99450,30КАМ-165E90,228ВИД Б0,132,70,90460,35ФМ-46E80,2529ВИД В0,32220,95380,40АФМ-82E80,330ВИД А0,53,52,50,97390,20ФМ-88E90,131ВИД Б0,74,5120,99420,25КАМ-163E90,532ВИД В0,92,5110,90440,30ФМ-42E80,233ВИД А1,14,5140,95360,35АФМ-87E90,2534ВИД Б1,3712,50,97390,40ФМ-85E90,335ВИД В1,530,10,99500,20КАМ-162E60,136ВИД А1,78150,90370,25ФМ-42E90,0537ВИД Б1,93,54,50,95450,30АФМ-82E80,238ВИД В2,12180,97380,35ФМ-85E80,2539ВИД А2,34,57,00,99360,40КАМ-163E90,340ВИД Б2,55,57,50,90420,20ФМ-48E90,141ВИД В2,73560,95440,25АФМ-83E90,0542ВИД А2,96,59,50,97390,30ФМ-84E90,243ВИД Б0,24,5110,99360,35КАМ-162E90,2544ВИД В0,42,5440,90500,40ФМ-43E80,345ВИД А0,66,58,50,95330,20АФМ-84E90,146ВИД Б3,53,52,50,97450,25ФМ-84E90,0547ВИД В1,02950,99440,30КАМ-165E90,248ВИД А1,232,70,90400,35ФМ-47E80,2549ВИД Б1,43,52,50,95450,40АФМ-84E80,3Ïðèì³òêà: Çàïèñ 4Å8 îçíà÷ຠ4108.

Подробнее

Вычислитель универсальный (руководство)

Информация пополнение в коллекции 12.01.2009

 

  1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ
  2. Общие требования
  3. Вычислитель ВУ-2000 должен соответствовать требованиям настоящих ТУ.
  4. Основные параметры
  5. Вычислитель ВУ-2000 предназначен для использования в качестве тепло- вычислителя и осуществляет:
  6. измерение электрических сигналов, поступающих от преобразователей объемного расхода, температуры, давления, плотности, а также отображения, накопления, обработки и передачи обработанной информации;
  7. определение, накопление, хранение и индикацию суммарной, нарастающим итогом потребленной тепловой энергии;
  8. преобразование число-импульсного кода, поступающего с подключенных преобразователей расхода, в текущее значение объемного и массового расхода теплоносителя, протекающего по подающему и (или) обратному трубопроводам и их индикацию;
  9. измерение сопротивлений подключенных термопреобразователей, преобразование измеренных значений сопротивлений в значения температур теплоносителя в подающем и обратном трубопроводах и их индикацию;
  10. определение и индикацию потребляемой разности температур теплоносителя в подающем и обратном трубопроводах;
  11. определение, накопление, хранение и индикацию суммарных, нарастающим итогом объема и массы теплоносителя, протекающих по подающему и (или) обратному трубопроводам;
  12. определение, накопление, хранение и индикацию времени работы вычислителя;
  13. индикацию даты с указанием года, месяца, числа, и времени с указанием часов, минут, секунд.
Подробнее

Проектирование усилителя электрических сигналов

Информация пополнение в коллекции 12.01.2009

В качестве источника входного сигнала УНЧ могут использоваться такие устройства как микрофон, звукосниматель, фотоэлемент, термопара, детектор и т.д. Типы нагрузок также весьма разнообразны. Ими могут быть громкоговоритель, измерительный прибор, записывающая головка магнитофона, последующий усилитель, осциллограф, реле и т.д. Большинство из перечисленных выше источников входного сигнала развивают очень низкое напряжение. Подавать его непосредственно на каскад усиления мощности не имеет смысла, так как при таком слабом управляющем напряжении невозможно получить сколько-нибудь значительное изменения выходного тока, а следовательно, и выходной мощности. Поэтому в состав структурной схемы усилителя, кроме выходного каскада, отдающего требуемую мощность полезного сигнала в нагрузку, как правило, входят предварительные каскады усиления. Основными техническими полазателями УНЧ являются: коэффициенты усиления (по напряжению, току и мощности), входное и выходное сопротивления, выходная мощность, коэффициент полезного действия, номинальное входное напряжение (чувствительность), диапазон усиливаемых частот, динамический диапазон амплитуд и уровень собственных помех, а также показатели, характеризующие нелинейные, частотные и фазовые искажения усиливаемого сигнала.

Подробнее

Принцип работы радиостанций

Информация пополнение в коллекции 12.01.2009

Передавач з фазовою модуляцією і чотирьохкратним множенням частоти кварцевого генератора. Високочастотний сигнал з кварцевого генератора надходить на фазовий модулятор, де під впливом низькочастотного сигналу здійснюється його модуляція. Після попереднього підсилення здійснюються множення частоти високочастотного сигналу шляхом послідовного подвоєння множниками частоти і фільтрування субгармонічних що складають полосовим фільтром (ПФ). Після підсилення підсилювачем потужності (ПП) здійснюється остаточне фільтрування високочастотного сигналу від гармонік.

Подробнее

История развития электроники

Информация пополнение в коллекции 12.01.2009

При высоком вакууме разряжение газа между электродами таково, что длина свободного пробега электронов значительно превосходит расстояние между электродами, поэтому при положительном, относительно катода напряжении на аноде Va электроны движутся к аноду, вызывая ток Ia в анодной цепи. При отрицательном напряжении анода Va эмитируемые электроны возвращаются на катод и ток в анодной цепи равен нулю. Таким образом электровакуумный диод обладает односторонней проводимостью, что используется при выпрямлении переменного тока. В 1907 г. американский инженер Ли де Форест установил, что поместив между катодом (К) и анодом (А) металлическую сетку (с) и подавая на нее напряжение Vc можно управлять анодным током Ia практически без инерционно и с малой затратой энергии. Так появилась первая электронная усилительная лампа триод(рис. 3). Ее свойства как прибора для усиления и генерирования высокочастотных колебаний обусловили быстрое развитие радиосвязи. Если плотность газа наполняющего баллон настолько высока, что длина свободного пробега электронов оказывается меньше расстояния между электродами, то электронный поток, проходя через межэлектродное расстояние взаимодействует с газовой средой в результате чего свойства среды резко изменяются. Газовая среда ионизируется и переходит в состояние плазмы, характеризующееся высокой электропроводностью. Это свойство плазмы было использовано американским ученым Хеллом в разработанном им в 1905 г. газотроне мощном выпрямительном диоде наполненном газом. Изобретение газотрона положило начало развитию газоразрядных электровакуумных приборов. В разных странах стало быстро развиваться производство электронных ламп. Особенно сильно это развитие стимулировалось военным значением радиосвязи. Поэтому 1913 1919 годы период резкого развития электронной техники. В 1913 г. немецкий инженер Мейснер разработал схему лампового регенеративного приемника и с помощью триода получил незатухающие гармонические колебания. Новые электронные генераторы позволили заменить искровые и дуговые радиостанции на ламповые, что практически решило проблему радиотелефонии. С этого времени радиотехника становится ламповой. В России первые радиолампы были изготовлены в 1914 году в СанктПетербурге консультантом русского общества беспроволочного телеграфирования Николаем Дмитриевичем Папалекси, будущим академиком АН СССР. Папалекси окончил Страсбургский университет, где работал под руководством Брауна. Первые радиолампы Папалекси изза отсутствия совершенной откачки были не вакуумными, а газонаполненными(ртутными). С 1914 1916 гг. Папалекси проводил опыты по радиотелеграфии. Работал в области радиосвязи с подводными лодками. Руководил разработкой первых образцов отечественных радиоламп. С 1923 1935 гг. совместно с Мандельштамом руководил научным отделом центральной радиолаборатории в Ленинграде. С 1935 года работал председателем научного совета по радиофизике и радиотехнике при академии наук СССР.

Подробнее

Аналоговые волоконно-оптические системы связи

Информация пополнение в коллекции 12.01.2009

Ранее указывалось, что оптические системы связи можно сконструировать с очень низким затуханием (< 1 дБ/км) и широкой полосой пропускания (ГГц/км). Выяснилось совершенно точно, что по сравнению с электрическими системами передачи данных у них значительно меньше полный имеющийся запас мощности. Несмотря на то, что это компенсируется низкими потерями передачи, преимущества оптической системы значительно ниже в тех случаях, когда требуется высокое отношение сигнал-шум К из-за того, что дополнительная требуемая на входе приемника мощность сигнала «съедает» часть запаса мощности на потери. Одна из особенностей импульсно-кодовой модуляции состоит в том, что можно получить малую вероятность ошибки при относительно низком отношении сигнал-шум на входе приемника. В соответствии с теорией для получения вероятности ошибок РЕ == Ю-9 требуется К == 12 (21,6 дБ). Динамический диапазон кодированного аналогового сигнала, который во многих случаях должен составлять 50 ... 60 дБ, определяется числом бит на отсчет, и это отражается на ширине полосы пропускания, требуемой для передачи сигнала с ИКМ. В случае прямой аналоговой передачи в полосе спектра модулирующего сигнала динамический диапазон обычно определяется отношением сигнал-шум на входе приемника, которое должно быть гораздо больше 21,6 дБ. Таким образом, потенциальные преимущества волоконно-оптических систем связи, вероятно, наибольшие при передаче двоичных сигналов с использованием ИКМ по интенсивности, скорее всего, будут значительно снижаться, если требуется прямая аналоговая модуляция по интенсивности в полосе спектра модулирующего сигнала. Тем не менее многие потребители настаивают на передаче сигналов в аналоговой форме не в последней степени из-за дороговизны и сложности цифровых кодеров и декодеров оконечной аппаратуры. Компромиссным решением между аналоговой модуляцией и ИКМ является использование импульсной модуляции по интенсивности в качестве поднесущей, которая может в дальнейшем легко модулироваться по частоте (ЧИМ) или фазе (ФИМ). Самые общие требования к аналоговой волоконно-оптической системе передачи данных предъявляет простая телеметрия и распределение телевизионных сигналов. Перед тем как рассмотреть специальные примеры, исследуем немного подробнее имеющийся запас мощности в оптических и в электрических системах связи. Для этого выберем системы, предназначенные для передачи сигнала с шириной полосы пропускания 100 МГц. Очевидно, что по волокну с диаметром сердцевины 50 мкм имеет смысл передавать сигналы мощностью приблизительно ФТ = 1 мВт (0 дБм). При использовании в качестве источника излучения СД порядок этой величины будет соизмерим с порядком потерь, а при большем диаметре сердцевины он может быть даже больше. Было показано, что предел квантового шума идеального оптического приемника с шириной полосы

Подробнее

Проектирование цифровой следящей системы

Информация пополнение в коллекции 12.01.2009

В проектируемой следящей системе в качестве исполнительного двигателя (Д) должен быть использован двигатель постоянного тока серии МИ, в качестве усилителя мощности - электромашинный усилитель с поперечным полем (ЭМУ). Для измерительного устройства (ИУ) рекомендуется использовать сельсинную пару: сельсин-датчик и сельсин-трансформатор (приемник). Так как измерительное устройство работает на переменном токе, а усилитель мощности и исполнительный двигатель - на постоянном токе, то после измерительного устройства должен быть применен фазовый детектор (ФД). Кроме указанных элементов в функциональную схему входят корректирующее устройство (КУ), усилитель напряжения (У), редуктор (Р), посредством которого исполнительный двигатель соединяется с объектом управления и ротором сельсина-трансформатора, и объект управления (ОУ). Корректирующее устройство представлено тремя блоками: аналого-цифровой преобразователь (АЦП), вычислитель (В) и цифро-аналоговый преобразователь (ЦАП).

Подробнее

Источник питания

Информация пополнение в коллекции 12.01.2009

Переменное напряжение питающей сети поступает через предохранитель ПР и сетевой фильтр на выключатель ВК, установленный обычно на панели ВМ. С выключателя сетевое напряжение подводится через термистор к петле размагничивания ЭЛТ и выпрямителю, на выходе которого подключен электрический конденсатор С. На этом конденсаторе получается (при напряжении питающей сети 220 В) постоянное напряжение величиной до 340 В. Для уменьшения стартового тока заряда этого конденсатора в цепь на входе выпрямительного моста иногда включают термистор, который в момент включения имеет сопротивление десятки Ом, а после его нагрева сопротивление падает до нескольких Ом. Это предохраняет диодный мост от чрезмерных перегрузок в момент включения ВМ. Постоянное напряжение от выпрямителя поступает на последовательно соединенные первичную обмотку силового трансформатора и ключевой транзистор для создания импульсов тока в этой цепи. Схема управления ключом обеспечивает задание частоты следования импульсов и их длительности (ШИМ) для регулирования выходных напряжений ИП. Сигнал о величине выходного из выходных выпрямителей В через элемент гальванической развязки, в качестве которого может использовать оптрон или импульсный трансформатор. На схему управления ключом могут поступать также сигналы для синхронизации рабочей частоты ИП с частотой строчной развертки, схем защиты по аварийным перегрузкам и схем отключения ИП при отсутствии на входе импульсов синхронизации от компьютера. Выходные выпрямители, подключенные к вторичным обмоткам силового трансформатора, обеспечивают получение необходимых постоянных питающих напряжений для всех узлов ВМ.

Подробнее

Аналоговые системы (мини АТС)

Информация пополнение в коллекции 12.01.2009

ПРОГР. КОД№ КЛ.ФУНКЦИЯДИАПАЗОН ЗНАЧЕНИЙ ИСХОДНЫЕ ЗНАЧЕНИЯFLASH 01Таймер системного удержания000-255 с060 сFLASH 02Таймер исключительного удержания000-255 с180 сFLASH 03Таймер возврата переданного вызова000-255 с045 сFLASH 04Таймер предустановленной переадресации вызова00-99 с10 сFLASH 05Таймер паузы1-9 с2 сFLASH 06Таймер парковки вызова000-255 с180 сFLASH 07Таймер конференции00-99 мин10 минFLASH 08Таймер уведомления о вызове000-104 мин000 минFLASH 09Не используетсяFLASH 10Таймер детектирования входящего вызова2-9 (x100) мс3(x100) мсFLASH 111Приоритет режимов удержания Систем./Исключит. Системное FLASH 12 Конфиденциальность связи 1Режим конфиденциальностиДа/нетДа2Сигнал предупрежденияДа/НетНетFLASH 13 GHX-36/461Управление внешним устройством вызова в ночном режиме Да/Нет (Версия: Италия)НетFLASH 14 GHX-36/461Длина кода счета3 или 4 цифры (Версия: Норвегия)4 цифрыFLASH 13 GHX-308А1Код вызова дежурного оператора (0)Да/НетДаFLASH 14 GHX-308А/6161Ограничение исходящего набора при входящем вызовеДа/Нет (Стандартная версия)НетFLASH 15 Назначение дежурного оператора № Тел. 100FLASH 16 Управление внешним вызывным устройством (звонком) № Тел. Не назначеноFLASH 17 Коды доступа УАТС (PBX)5 кодов по 2 цифры Не назначеноFLASH 181 - 4Пары “Директор/Секретарь”4 парыНе назначеноFLASH 19 1 - 8Группы поиска до 8 абонентов в группеFLASH 20 GHX-616/36/46 Параметры режима регистрации вызовов (SMDR)1AРазрешение режима SMDRДа/Нет Нет 2AТип регистрируемых вызовов Все исходящие / МеждугородныеМеждугородные 3AФормат печати (кол-во знаков в строке)80/29 80 4AСкорость передачи данных 300/1200 Бод300 5AРегистрация входящих вызововДа/НетНет 6AСохранение данных регистрацииДа/НетНет 9Выбор страницы A10Выбор страницы B1BДенежная единица3 буквыDOL 2BСтоимость тарифного интервала времени4 цифры0025 3BДробная часть 1 цифра0-4 4BТип сигнала тарификации0/10FLASH 21 GHX-616/36/46Контроль датчика сигнализации1Разрешение режима сигнализации Да/НетНет 2Тип сигнала тревоги Повторяющийся / ОднократныйОднократный 3Условие срабатыванияЗамкнуто/РазомкнутоЗамкнутоFLASH 21 GHX-308AВходящий вызов от УАТС (PBX)Однократный / ПовторяющийсяОднократныйFLASH 22Сигнал предупреждения об оповещенииДа/НетДаFLASH 231-2Функции реле управления внешними устройствамиГромкий звонок/ Открытие двериГромкий звонокFLASH 24 GHX-36/46Таймер экстренного вызова дежурного000-255 с (Версия Италия)30 сFLASH 25Таймер вызова от переговорного устройства00-60 c60 cFLASH 26Не используетсяFLASH 27 GHX-616/36/46Возврат необслуженного вызова всем абонентам Да/НетНетFLASH 28Установка времени и даты Да/НетНетFLASH 291Групповое прослушивание (мониторинг)Да/НетНетFLASH 30 Атрибуты внешних линий1AТип набораТоновый (DTMF)/ ИмпульсныйТоновый (DTMF) 2AРежим универсального ночного ответа (UNA)Да/НетНет3AОтмена ограничений по исходящей связиДа/НетНет4AТип кратковременного отбоя (Flash)Замыкание на “землю” / Размыкание шлейфаРазмыкание шлейфа5AСоотношение импульс/пауза60/40 или 66/3366/336AСкорость набора10 или 20 имп/с10 имп/с7AТип внешней линии 0(CO) / 1(PBX)0(CO) 8AКонтроль шлейфа0-9 мин0 9Выбор страницы A1BТаймер кратковременного отбоя01-20(x100) мс10(x100) мс 2BГруппа линий исходящей связи0 - 4 (7)1GHX-616/36/464BРежим прямого доступа (DISA)0: Нет, 1: 24 часа, 2: День 3: НочьНет 10Выбор страницы B11Переход к следующему номеру линии12Переход к предыдущему номеру линииFLASH 31Таймер отбоя внутренней линии01-20(x100) мс05(x100)мсFLASH 32Не используетсяFLASH 33Таймер вызова дежурного000-255 с030 сFLASH 34 GHX-616/36/461-8Назначение входящих вызовов в группу поиска (режим UCD группы)FLASH 351Выбор типа звукового сигнала вызоваИндикатор Вкл./Откл. KST: 0.4/0.4/0.4/2 SLT: 0.4/0.2/0.4/4 или KST: 0.8/2.4 SLT: 1/4Индикатор включен Внутренний вызов KST: 0.4/0.4/0.4/2 SLT: 0.4/0.2/0.4/4 Внешний вызов: KST: 0.8/2.4 SLT: 1/4FLASH 36 GHX-616/36/46Изменяемый план нумерации абонентов100 - 699100-139FLASH 36 GHX- 308A1-2Изменяемый план нумерации абонентов100 - 699100-107FLASH 371Способ выбора линии внутри группыКруговой (Да/Нет)НетFLASH 38 GHX-616/36/46Таймер автодозвона030-255 с060 сFLASH 39Многолинейная конференцияДа/НетНетFLASH 40Атрибуты абонентов1AОповещениеДа/НетДа 2AРежим “Не беспокоить”Да/НетДа 3AСистемные ячейки ускоренного набораДа/НетДа 4AТелефонная гарнитураДа/НетНет 5AПриоритет ответа на входящий вызовДа/НетДа 6A3 -минутное предупреждениеДа/НетНет 7AРежим переадресации вызоваДа/НетДаGHX-616/36/468AПрием сигнала тревоги и вызова от переговорного устройстваДа/НетНетGHX-308A8AВызов от переговорного устройстваДа/НетНет 1BИдентификатор абонента1 - 712BКласс обслуживания абонента11 - 6611 3BБлокировка персональных ячеек памяти0 - 21 4BГруппа по перехвату вызова0 - 81 5BЗона оповещения0 - 21 6BПредустановленная переадресация№ Тел.Не назначен 7BДоступ к группам внешних линий1 - 7Все 8BНазначение функциональных клавиш BBLLRКлавиши прямого доступа 9BПросмотр назначений функц. клавишBBLLRКлавиши прямого доступа10 Переход к “странице A”11Переход к “странице В”12Выбор диапазона абонентов FLASH 41 GHX-616/36/461Переадресация за пределы системыДа/Нет (стандартная версия)НетFLASH 41 GHX-36/461Заголовок для каждой записи SMDRДа/Нет (версия: Италия) НетFLASH 42 GHX-616/36/461Использование модуля приема сигналов тарификацииДа/Нет НетFLASH 43 GHX-616/36/461Выбор типа сообщений дисплея Тип 1 / Тип 2Тип 1FLASH 44 GHX-616/36/46Таймер переадресации при отсутствии ответа000 - 255 с015 сFLASH 45Предотвращение запрещенного набораДа/НетНетFLASH 46Не используетсяFLASH 47 GHX-616/36/461Выбор кода вызова дежурного “0” / “9”“0”FLASH 48 GHX-616/36/46Таймер режима регистрации SMDR000 - 255 с000 сFLASH 49 GHX-616/36/46Таймер игнорирования исключительного удержания01-99 (100 мс)10 (100 мс)FLASH 50Таблицы ограничения исходящей связи1Таблица разрешений A8 цифр (16 ячеек)Не назначено2Таблица запрещений A8 цифр (16 ячеек)Не назначено3Таблица разрешений В8 цифр (16 ячеек)Не назначено4Таблица запрещений В8 цифр (16 ячеек)Не назначено5Просмотр таблицыFLASH 51 GHX-616/36/46Управление музыкальным источником 0 - внутренний 1 - внешний 2 - автоинформатор0 (внутренний)FLASH 52 Атрибуты абонентов II1 Привилегия внедренияДа/НетНет2 Открытие двериДа/НетНет3 Передача внутреннего вызоваДа/НетНет3Экстренный вызов дежурного (версия: Италия)Да/НетНет4Прослушивание фоновой музыки Да/НетНет5Передача вызова за пределы системыДа/НетНетFLASH 531-6 Выбор типа режима горячей линии Не назначеноFLASH 54Таймер открытия двери05-99 (100 мс)20 (100 мс)FLASH 55 GHX-616/36/46Выбор режима автоинформатора1-63FLASH 56 Таймер задержки подключения внешней линии00-99(100 мс)05 (100 мс)FLASH 57Таймер горячей линии0-9 с0 сFLASH 58Управление сегментами автоинформатора1 : DISA (день)SEG1 -1GHX-616/36/462 : DISA (ночь)SEG2 - 33 : DISA (занято)SEG3 - 44 : DISA (ошибка)SEG4 - 55 : DISA (нет набора)6 : МОН7 : будильник8 : UCD19 : UCD2FLASH 59 GHX-616/36/46Управление каналами автоинформатораMOH, DISA, UCDКаналы 1-4 : режим DISAFLASH 60Инициализация системных атрибутовFLASH 61Инициализация атрибутов внешних линийFLASH 62Инициализация атрибутов абонентовFLASH 63Инициализация таблиц ограниченийFLASH 64Инициализация системных ячеек ускоренного набораFLASH 65Инициализация всей базы данныхFLASH 66 - FLASH 79 только для GHX-616/36/46.FLASH 66Таймер отсутствия ответа для режима DISA000-255 c060 cFLASH 67Код доступа режима DISAXXX (3 цифры)000 (открытый доступ) FLASH 68Голосовое сопровождение режима DISAДа/НетНетFLASH 69Доступ к внешним линиям в режиме DISAДа/НетНетFLASH 70Печать всей базы данныхFLASH 71Печать системных атрибутовFLASH 72Печать атрибутов внешних линий4 цифры (диапазон линий)FLASH 73Печать атрибутов абонентов6 цифр (диапазон абонентов)FLASH 741-4Печать таблиц ограничений2 цифры (номер ячейки)FLASH 75Печать системных ячеек ускоренного набора4 цифры (диапазон ячеек)FLASH 76Тип группы поискаКонечный поиск/ Круговой поискКруговой поискFLASH 771Вызов группы поиска в режиме DISAДа/НетНет2Вызов группы по первой цифреДа/НетНет3Вызов группы, если абонент занятДа/НетНетFLASH 781-3Обслуживание линии DISA в ночном режимеАналогично дневному режиму FLASH 791-5Обслуживание вызова по линии DISA1Занято1. Тон ошибки и отбой линииЗанято : Повтор 2Ошибка набора номера2. Вызов дежурногоОшибка : Повтор3Отсутствие набора номера3. Повтор попыткиНет набора : Дежурн.4Отсутствие ответа абонентаНет ответа : Дежурн.5Тон ошибки от ГАТСТон ошибки от ГАТС : Дежурн.FLASH 80 - FLASH 82 - не используетсяFLASH 83 - FLASH 89 только для GHX-616FLASH 83 Параметры зуммерного сигнала отбоя (для VAU)000-255 (x 50 мс)Импульс: 005 Пауза: 005FLASH 84Таймер детектора зуммерного сигнала отбоя (для VAU)3-9 с5 сFLASH 85Повтор сообщения режима DISAДа/НетНетFLASH 86 1-2Назначение портов для приема факсимильных сообщенийЛиния: 01-06 Абонент: 100-699Не назначеноFLASH 87Таймер детектирования факсимильных сигналов05-30 с05 сFLASH 88Таймер вызова линии факсимильного аппарата1-3 мин1 минFLASH 89Таймер паузы между посылками вызова3-4 с4 сFLASH 76 - FLASH 79 только для GHX-308AFLASH 76 1-2Назначение портов для приема факсимильных сообщенийЛиния: 01-03 Абонент: 100-699Не назначеноFLASH 77Таймер детектирования факсимильных сигналов05-30 с05 сFLASH 78Таймер вызова линии факсимильного аппарата1-3 мин1 минFLASH 79Таймер паузы между посылками вызова3-4 с4 с

Подробнее

Канал последовательной связи на основе МС 8251

Информация пополнение в коллекции 12.01.2009

Номер контактаСокращениеНаправлениеПолное название1FGОсновная или защитная земля2TD (TXD)К DCEПередаваемые данные3RD (RXD)К DTEПринимаемые данные4RTSК DCEЗапрос передачи5CTSК DTEСброс передачи6DSRК DTEГотовность модема7SGСигнальная земля8DCDК DTEОбнаружение несущей данных9К DTE(Положительное контрольное напряжение)10К DTE(Отрицательное контрольное напряжение)11QMК DTEРежим выравнивания12SDCDК DTEОбнаружение несущей вторичных данных13SCTSК DTEВторичный сброс передачи14STDК DCEВторичные передаваемые данные15TCК DTEСинхронизация передатчика16SRDК DTEВторичные принимаемые данные17RCК DTEСинхронизация приемника18DCRК DCEРазделенная синхронизация приемника19SRTSК DCEВторичный запрос передачи20DTRК DCEГотовность терминала21SQК DTEКачество сигнала22RIК DTEИндикатор звонка23К DCE(Селектор скорости данных)24TCК DCEВнешняя синхронизация передатчика25К DCE(Занятость)

Подробнее

Радиолокатор

Информация пополнение в коллекции 12.01.2009

Горные вершины просматриваются на экране в виде ярких отметок, за которыми располагаются тени, возникающие вследствие того, что участки местности, лежащие за вершиной, оказываются экранированными и не облучаются. По мере приближения самолета к горной вершине ее изображение перемещается к центру экрана, размеры отметки уменьшаются и яркость ослабляется. Если превышение самолета над вершиной составляет более 600 м, то, не доходя до первого десятикилометрового кольца дальности, отметка от вершины исчезает, (отражатель выходит из диаграммы). Это является признаком безопасности полета. Если же превышение самолета над вершиной недостаточно для безопасного полета, то отметка от вершины будет просматриваться и на меньших расстояниях, и экипаж должен предпринять обходной маневр.

Подробнее

Испытания изделий электронной техники

Информация пополнение в коллекции 12.01.2009

При плане двухступенчатого контроля число контролируемых изделий равно объему первой выборки, указанному в плане. Если число дефектных изделий, обнаруженных в первой выборке, равно или меньше первого приемочного числа Ac1, партия принимается. Если число дефектных изделий, обнаруженных в первой выборке, равно или превышает первое браковочное число Re1, партия бракуется. Если число дефектных изделий, обнаруженных в первой выборке, находится между первым приемочным и браковочным числами, контролю подлежит вторая выборка, указанная в плане контроля. Числа дефектных изделий, обнаруженные в первой и второй выборках суммируются. Если суммарное число дефектных изделий равно или меньше второго приемочного числа Ac2, партия принимается. Если суммарное число дефектных изделий равно или превышает второе браковочное число Re2, партия бракуется. На рисунке 3 показан ход действия двухступенчатых планов контроля.

Подробнее

Исследование синхронного сдвигающего регистра на JK-триггере

Информация пополнение в коллекции 12.01.2009

Чтобы получить выражение, описывающее логику формирования сигналов на входе триггера, используем уравнение: Ji = y · Qi+3 + y · Qi-3 , где i = 1..8, причем если результат подстановки i окажется меньше или равным нулю, то к результату следует прибавить максимальное (в данном случае 8) количество разрядов в проектируемом регистре, если же результат окажется больше максимального количества разрядов (т.е. 8), то из него следует вычесть это максимальное число.

Подробнее
<< < 2 3 4 5 6 7 8 9 10 > >>