Радиоэлектроника

Радиоэлектроника

Исследование синхронного сдвигающего регистра на JK-триггере

Информация пополнение в коллекции 12.01.2009

Чтобы получить выражение, описывающее логику формирования сигналов на входе триггера, используем уравнение: Ji = y · Qi+3 + y · Qi-3 , где i = 1..8, причем если результат подстановки i окажется меньше или равным нулю, то к результату следует прибавить максимальное (в данном случае 8) количество разрядов в проектируемом регистре, если же результат окажется больше максимального количества разрядов (т.е. 8), то из него следует вычесть это максимальное число.

Подробнее

Программная реализация модального управления для линейных стационарных систем

Информация пополнение в коллекции 12.01.2009

OptsUnit.pas

  • KursovayaWork.dpr - файл проекта, содержащий ссылки на все формы проекта и инициализирующий приложение.
  • В модуле MainUnit.pas находится описание главной формы приложения, а также сконцентрированы процедуры и функции, поддерживаюшие нужный интерфейс программы.
  • Модули SubUnit.pas и Operates.pas содержат процедуры и функции, составляющие смысловую часть программной реализации алгоритма, т.е. процедуры решения задачи модально управления, процедуры решения систем дифференциальных уравнений, процедуры отображения графиков решений систем и т.д. Там также находятся процедуры отображения результатов расчетов на экран.
  • В модуле Matrix.pas расположено описание класса TMatrix - основа матричных данных в программе.
  • Модули HelpUnit.pas и OptsUnit.pas носят в программе вспомогательный характер.
  • Для решения систем дифференциальных уравнений использован метод Рунге-Кутта четвертого порядка точности с фиксированным шагом. Метод был позаимствован из пакета программ NumToolBox и адаптирован под новую модель матричных данных.
  • Обращение матриц производится методом исключения по главным диагональным элементам (метод Гаусса). Этот метод так же был позаимствован из NumToolBox и соответствующе адаптирован.
Подробнее

Волоконно-оптические линии связи (Контрольная)

Информация пополнение в коллекции 12.01.2009

Наименование параметраОбозначениеЕд. изм.ВеличинаДиаметр сердцевины 2мкм10Диаметр оболочки2bмкм125Потери на поляризациюtg10100,8Длина волны мкм1,3Коэффициент рассеянияКрмкм4дБ/км1,05Тип световодаСтупенчатыйКоэффициент преломления сердцевиныn11,5Коэффициент преломления оболочки n21,47Потери в разъемном соединениирсДб1,3Потери в неразъемном соединениинсДб0,31Энергетический потенциал аппаратурыQДб49Строительная длина кабелясдкм1Зоновый кабель с числом волокон4

Подробнее

Прибор

Информация пополнение в коллекции 12.01.2009

Комплексным показателем качества продукции называется такой показатель качества продукции, который относится к нескольким ее свойствам. С помощью данного показателя можно в целом охарактеризовать качество того или иного прибора. Разновидностью комплексного показателя качества, позволяющего с экономической точки зрения определить оптимальную совокупность свойств изделия, является интегральный показатель качества. Это комплексный показатель качества, который отражает соотношение суммарного полезного эффекта от эксплуатации и суммарных затрат на создание и эксплуатацию прибора.

Подробнее

Проектирование бесконтактного магнитного реле

Информация пополнение в коллекции 12.01.2009

БМР имеет этажерочную конструкцию. Сердечники с обмотками устанавливаются на стальное шасси . Между БМР и шасси, а также между БМР и трансформатором предусмотрены карболитовые детали и . Сердечники БМР и трансформатора ( и ) помещаются в текстолитовые каркасы и , поверх которых наматываются обмотки, соответственно рабочие и сетевая. В БМР поверх рабочих обмоток на оба сердечника наматываются обмотки постоянного тока . Поверх сетевой обмотки трансформатора наматываются рабочая и обмотка смещения . Трансформатор и БМР крепятся на шасси при помощи латунного болта . Также на шасси устанавливается разъем . К внутренней стороне стальной лицевой панели ( ) крепится печатная плата ( ) с элементами: подстроечными резисторами и соответственно цепей обратной связи и смещения, а также постоянными ограничительными резисторами и соответственно цепей обратной связи и смещения . также на плате припаивается конденсатор фильтр цепи смещения , диодная сборка , и диоды рабочей цепи и . На внешней стороне лицевой панели расположена ручка . На лицевой панели предусмотрены отверстия для отвертки, необходимые для настройки БМР.

Подробнее

Исследование реакции нижней ионосферы на высыпание энергичных частиц из радиационных поясов Земли

Информация пополнение в коллекции 12.01.2009

В настоящее время надежно установлено, что Земля и ее магнитное поле погружены в непрерывно текущий поток плазмы солнечного происхождения солнечный ветер. Солнечный ветер, который представляет собой расширение солнечной короны со сверхзвуковой скоростью, несет с собой в космическое пространство магнитное поле Солнца. Магнитное поле Земли взаимодействует с плазмой солнечного ветра, и на геоцентрическом расстоянии примерно между Землей и Солнцем образуется ударный фронт. Основной поток солнечного ветра обтекает Землю и уносит геомагнитное поле в длинный магнитный хвост. Следовательно, Земля окружена магнитной полостью магнитосферой, строение и свойства которой определяются главным образом магнитным полем земли и токами, генерируемыми солнечным ветром. Считают, что частицы солнечного ветра попадают в атмосферу либо через магнитный хвост, либо через полярные каспы с низкой напряженностью магнитного поля, расположенные на дневной стороне Земли. Как известно в магнитосфере протекает множество физических процессов. Многие из них, косвенно связанные с такими давно известными явлениями, как полярные сияния (высыпание частиц в полярных широтах), и магнитные бури, прямо или косвенно обусловлены взаимодействием солнечного ветра и магнитосферы Земли.

Подробнее

Проектирование сигнатурного анализатора

Информация пополнение в коллекции 12.01.2009

До взятия сигнатур от узлов в системе сам сигнатурный анализатор и подключения входных сигналов контролируются по сигнатурам земли и питания Vcc. Регистр сдвига а анализаторе инициализируется на нуль до регистрации любых данных. Когда пробник касается земли, вход данных всегда находится в состоянии логического нуля 0, которое не изменяет начального состояния регистра сдвига. По окончании цикла регистрации данных остаток в регистре сдвига будет нулевым. Это состояние может изменить только входной сигнал логической 1, которого, очевидно, не может быть при контроле сигнатуры земли. Следовательно, земля всегда дает сигнатуру 0000, которую можно считать ее “характеристической сигнатурой”. Однако положительное питание Vcc всегда воспринимается как состояние логической 1, которое изменяет начальное состояние регистра сдвига. Остаток, образующийся по окончании регистрации данных, зависит от числа состояний синхронизации между сигналами пуска и останова и будет различным при изменении запускающих сигналов. При конкретном подключении сигналов пуска, останова и синхронизации сигнатура Vcc будет одной и той же, поэтому ее называют “характеристической сигнатурой” для данного подключения входов. Но, разумеется, она будет получаться различной при других подключениях управляющих входов и (или) выборе других активных фронтов. Когда от проверяемого узла получается такая же сигнатура, как и от Vcc, может оказаться что из-за отказа он закорочен на шину питания Vcc. Однако иногда и от исправных узлов получается такая же сигнатура, как и характеристическая сигнатура Vcc. Проще всего различать эти две ситуации по индикатору логического пробника в исправном узле он вспыхивает, показывая наличие сигналов в узле. Если же индикатор не вспыхивает, следует предположить наличие отказа.

Подробнее

Проектирование схемы телефонного сигнализатора

Информация пополнение в коллекции 12.01.2009

Подробнее

Выходные каскады в режиме В

Информация пополнение в коллекции 12.01.2009

В усилителях, предназначенных для усиления гармонических сигналов различных частот, а также в усилителях импульсных сигналов обеих полярностей использование режима В возможно лишь в двухтактной схеме. При этом одно плечо двухтактной схемы работает в течение положительного полупериода сигнала, другое в течение отрицательного полупериода и форма сигнала на нагрузке при прямолинейной динамической характеристике не отличается от формы эдс источника сигнала. В практических условиях вследствие непрямолинейности динамической характеристики и неодинаковости параметров усилительных элементов в плечах схемы режим В в двухтактной схеме дает нелинейные искажения как по четным, так и по нечетным гармоникам. Коэффициент гармоник в режиме В выше, чем в режиме А, вследствие использования большего участка статической характеристики усилительного элемента, включая ее криволинейную нижнюю часть.

Подробнее

Проектирование устройства преобразования сигналов

Информация пополнение в коллекции 12.01.2009

В полудуплексном режиме АПД попеременно работает на передачу и на прием .Изменение направления передачи осуществляется тем ООД, которое распознает конец принятого сообщения. Конец может быть выявлен по принятой последовательности битов (после чего ООД на передающей стороне переводит цепь 105 в состояние «выключено» и в АПД выключается передатчик) или по снижению уровня приема ниже установленного минимального значения. В обоих случаях ООД на приемной стороне должно ожидать перехода цепи 109 в состояние «выключено». Такой переход происходит после упомянутого снижения уровня приема не сразу ,а лишь через определенное время последействия (tпосл на рис.),превышающее длительность перерывов , которые возможны в канале связи . только когда зафиксировано состояние «выключено» цепи 109,ООД оконечной установки , работавшей ранее на прием ,переключается на передачу ,переводя цепь 105 в состояние «включено». Передача данных начинается после того ,как АПД посредством перевода цепи 106 в состояние «включено» откроет соединительный тракт. До тех пор ,пока цепь 105 находится в состоянии «включено»,цепь приема данных 104 работающей на передачу установки для защиты от ложных изменений состояния должна находиться в состоянии «1». Установка 1 передающая Установка 1 - приемная

Подробнее

Вычисление элементарных функций

Информация пополнение в коллекции 12.01.2009

Способ уменьшения интервала изменения аргумента зависит от свойств функции. Если функция периодическая, то имеет смысл вычислять ее только на одном периоде изменения аргумента. Если функция симметричная, то это свойство также можно использовать для уменьшения интервала. Существует распространенный прием уменьшения диапазона изменения аргумента, который основывается на использовании теорем сложения и умножения элементарных функций. Одним из наиболее простых и универсальных приемов является разбиение всего диапазона изменения на ряд интервалов (сегментная аппроксимация). Обычно аргумент приводят к интервалу [- 1, 1 ] или [ 0, 1]. Такой выбор объясняется наилучшей изученностью поведения функции на этих интервалах, возможностью работы в режиме с фиксированной точкой, наличием точки нуль, которая для многих функций является осью симметрии, и тем, что на данных отрезках существуют ортогональные многочлены.

Подробнее

Аналіз перетворень сігналів

Информация пополнение в коллекции 12.01.2009

кГц00ВИД А3,056,50,90360,20ФМ-41E80,101ВИД Б1,28120,95310,25АФМ-84E90,0502ВИД В2,52,52,40,97380,30ФМ-83E70,203ВИД А0,156,50,99420,35КАМ-162E90,2504ВИД Б0,35,58,00,90420,40ФМ-42E80,305ВИД В0,522,40,95440,20АФМ-81E70,106ВИД А0,732,70,97400,25ФМ-83E90,0507ВИД Б0,943,50,99370,30КАМ-164E90,208ВИД В1,22,5500,90500,35ФМ-42E80,2509ВИД А1,53,52,50,95390,40АФМ-84E80,310ВИД Б1,84,5120,97360,20ФМ-82E90,111ВИД В2,03350,99380,25КАМ-163E90,0512ВИД А2,54,5140,90420,30ФМ-49E90,213ВИД Б2,86,5180,95330,35АФМ-85E90,2514ВИД В3,02,5800,97440,40ФМ-81E80,315ВИД А0,2712,50,99390,20КАМ-165E91,016ВИД Б0,48150,90370,25ФМ-42E90,0517ВИД В0,621,60,95500,30АФМ-84E70,218ВИД А0,83,54,50,97450,35ФМ-81E80,2519ВИД Б1,04,57,00,99360,40КАМ-163E90,320ВИД В1,130,80,90380,20ФМ-45E70,121ВИД А1,35,57,50,95420,25АФМ-82E90,0522ВИД Б1,46,59,50,97370,30ФМ-84E90,223ВИД В1,62100,99440,35КАМ-166E80,2524ВИД А2,24,5110,90420,40ФМ-42E80,325ВИД Б2,46,58,50,95330,20АФМ-84E90,126ВИД В2,62,50,10,97500,25ФМ-81E70,0527ВИД А1,93,52,50,99450,30КАМ-165E90,228ВИД Б0,132,70,90460,35ФМ-46E80,2529ВИД В0,32220,95380,40АФМ-82E80,330ВИД А0,53,52,50,97390,20ФМ-88E90,131ВИД Б0,74,5120,99420,25КАМ-163E90,532ВИД В0,92,5110,90440,30ФМ-42E80,233ВИД А1,14,5140,95360,35АФМ-87E90,2534ВИД Б1,3712,50,97390,40ФМ-85E90,335ВИД В1,530,10,99500,20КАМ-162E60,136ВИД А1,78150,90370,25ФМ-42E90,0537ВИД Б1,93,54,50,95450,30АФМ-82E80,238ВИД В2,12180,97380,35ФМ-85E80,2539ВИД А2,34,57,00,99360,40КАМ-163E90,340ВИД Б2,55,57,50,90420,20ФМ-48E90,141ВИД В2,73560,95440,25АФМ-83E90,0542ВИД А2,96,59,50,97390,30ФМ-84E90,243ВИД Б0,24,5110,99360,35КАМ-162E90,2544ВИД В0,42,5440,90500,40ФМ-43E80,345ВИД А0,66,58,50,95330,20АФМ-84E90,146ВИД Б3,53,52,50,97450,25ФМ-84E90,0547ВИД В1,02950,99440,30КАМ-165E90,248ВИД А1,232,70,90400,35ФМ-47E80,2549ВИД Б1,43,52,50,95450,40АФМ-84E80,3Ïðèì³òêà: Çàïèñ 4Å8 îçíà÷ຠ4108.

Подробнее

История развития ЭВМ и практическое применение в обучении

Информация пополнение в коллекции 12.01.2009

Сейчас разрабатывается основательный вариант «карманного учителя». Даже имя ему придумали: «Сирин». Сирин - волшебный персонаж из русской народной сказки - полуптица, получеловек. А расшифровывается название вполне в духе кибернетического века: « синтезатор речи индивидуальный». Надеемся, что вскоре говорящий «Сирин» появится в школах и будет верным помощником и учителя, и ученика в изучении русского и иностранных языков. Это будет уже не игрушка, а вполне серьезный аппарат с широкими возможностями. Сменные блоки памяти обеспечат практически неограниченный словарный запас. Но компьютер может работать не только со словами. Табло-экран вместит целые предложения и даже небольшие диалоги, которые синтезатор будет произносить с нужной интонацией. Электроника по вашему требованию будет повторять нужный фрагмент хоть сто раз, пока вы твердо не запомните звучание.Остается только пожелать, чтобы этот замечательный аппарат как можно скорее поступил в серийное производство и пришел на помощь всем, кто изучает русский и иностранные языки.

Подробнее

История развития электроники

Информация пополнение в коллекции 12.01.2009

При высоком вакууме разряжение газа между электродами таково, что длина свободного пробега электронов значительно превосходит расстояние между электродами, поэтому при положительном, относительно катода напряжении на аноде Va электроны движутся к аноду, вызывая ток Ia в анодной цепи. При отрицательном напряжении анода Va эмитируемые электроны возвращаются на катод и ток в анодной цепи равен нулю. Таким образом электровакуумный диод обладает односторонней проводимостью, что используется при выпрямлении переменного тока. В 1907 г. американский инженер Ли де Форест установил, что поместив между катодом (К) и анодом (А) металлическую сетку (с) и подавая на нее напряжение Vc можно управлять анодным током Ia практически без инерционно и с малой затратой энергии. Так появилась первая электронная усилительная лампа триод(рис. 3). Ее свойства как прибора для усиления и генерирования высокочастотных колебаний обусловили быстрое развитие радиосвязи. Если плотность газа наполняющего баллон настолько высока, что длина свободного пробега электронов оказывается меньше расстояния между электродами, то электронный поток, проходя через межэлектродное расстояние взаимодействует с газовой средой в результате чего свойства среды резко изменяются. Газовая среда ионизируется и переходит в состояние плазмы, характеризующееся высокой электропроводностью. Это свойство плазмы было использовано американским ученым Хеллом в разработанном им в 1905 г. газотроне мощном выпрямительном диоде наполненном газом. Изобретение газотрона положило начало развитию газоразрядных электровакуумных приборов. В разных странах стало быстро развиваться производство электронных ламп. Особенно сильно это развитие стимулировалось военным значением радиосвязи. Поэтому 1913 1919 годы период резкого развития электронной техники. В 1913 г. немецкий инженер Мейснер разработал схему лампового регенеративного приемника и с помощью триода получил незатухающие гармонические колебания. Новые электронные генераторы позволили заменить искровые и дуговые радиостанции на ламповые, что практически решило проблему радиотелефонии. С этого времени радиотехника становится ламповой. В России первые радиолампы были изготовлены в 1914 году в СанктПетербурге консультантом русского общества беспроволочного телеграфирования Николаем Дмитриевичем Папалекси, будущим академиком АН СССР. Папалекси окончил Страсбургский университет, где работал под руководством Брауна. Первые радиолампы Папалекси изза отсутствия совершенной откачки были не вакуумными, а газонаполненными(ртутными). С 1914 1916 гг. Папалекси проводил опыты по радиотелеграфии. Работал в области радиосвязи с подводными лодками. Руководил разработкой первых образцов отечественных радиоламп. С 1923 1935 гг. совместно с Мандельштамом руководил научным отделом центральной радиолаборатории в Ленинграде. С 1935 года работал председателем научного совета по радиофизике и радиотехнике при академии наук СССР.

Подробнее

Аналоговые волоконно-оптические системы связи

Информация пополнение в коллекции 12.01.2009

Ранее указывалось, что оптические системы связи можно сконструировать с очень низким затуханием (< 1 дБ/км) и широкой полосой пропускания (ГГц/км). Выяснилось совершенно точно, что по сравнению с электрическими системами передачи данных у них значительно меньше полный имеющийся запас мощности. Несмотря на то, что это компенсируется низкими потерями передачи, преимущества оптической системы значительно ниже в тех случаях, когда требуется высокое отношение сигнал-шум К из-за того, что дополнительная требуемая на входе приемника мощность сигнала «съедает» часть запаса мощности на потери. Одна из особенностей импульсно-кодовой модуляции состоит в том, что можно получить малую вероятность ошибки при относительно низком отношении сигнал-шум на входе приемника. В соответствии с теорией для получения вероятности ошибок РЕ == Ю-9 требуется К == 12 (21,6 дБ). Динамический диапазон кодированного аналогового сигнала, который во многих случаях должен составлять 50 ... 60 дБ, определяется числом бит на отсчет, и это отражается на ширине полосы пропускания, требуемой для передачи сигнала с ИКМ. В случае прямой аналоговой передачи в полосе спектра модулирующего сигнала динамический диапазон обычно определяется отношением сигнал-шум на входе приемника, которое должно быть гораздо больше 21,6 дБ. Таким образом, потенциальные преимущества волоконно-оптических систем связи, вероятно, наибольшие при передаче двоичных сигналов с использованием ИКМ по интенсивности, скорее всего, будут значительно снижаться, если требуется прямая аналоговая модуляция по интенсивности в полосе спектра модулирующего сигнала. Тем не менее многие потребители настаивают на передаче сигналов в аналоговой форме не в последней степени из-за дороговизны и сложности цифровых кодеров и декодеров оконечной аппаратуры. Компромиссным решением между аналоговой модуляцией и ИКМ является использование импульсной модуляции по интенсивности в качестве поднесущей, которая может в дальнейшем легко модулироваться по частоте (ЧИМ) или фазе (ФИМ). Самые общие требования к аналоговой волоконно-оптической системе передачи данных предъявляет простая телеметрия и распределение телевизионных сигналов. Перед тем как рассмотреть специальные примеры, исследуем немного подробнее имеющийся запас мощности в оптических и в электрических системах связи. Для этого выберем системы, предназначенные для передачи сигнала с шириной полосы пропускания 100 МГц. Очевидно, что по волокну с диаметром сердцевины 50 мкм имеет смысл передавать сигналы мощностью приблизительно ФТ = 1 мВт (0 дБм). При использовании в качестве источника излучения СД порядок этой величины будет соизмерим с порядком потерь, а при большем диаметре сердцевины он может быть даже больше. Было показано, что предел квантового шума идеального оптического приемника с шириной полосы

Подробнее

Происхождение ЭВМ

Информация пополнение в коллекции 12.01.2009

Инженер Intel Тед Хофф отказался от такого решения и совместно с другими сотрудниками фирмы Стэном Мэйзором и Федерико Фэджини создал универсальное логическое устройство в виде микросхемы, которая пользовалась записанными в своей полупроводниковой памяти командами. Хофф предложил концепцию изделия и разработал его архитектуру, Мэйзор создал систему команд, а Фэджин спроектировал микросхему. Это процессорное устройство, входившее в набор из четырех микросхем, не только полностью соответствовало техническому заданию японской фирмы, но и без каких-либо специальных переделок могло использоваться во множестве других приборов. Через 25 лет, в 1996 году, имена троих изобретателей микропроцессоров будут внесены в список Национального зала славы изобретателей США и окажутся в одном ряду с именами братьев Райт и Томаса Эдисона. Осознав колоссальные возможности этого чипа, изобретатели стали убеждать руководство Intel выкупить права на микросхему у Busicom. Мур и Нойс быстро поняли, какие фантастические выгоды сулит чип, способный снабдить электронным интеллектом "тупые" машины, и предложили японцам 60 тысяч долларов за микросхему. На счастье Intel компания-заказчик находилась на грани банкротства и ей "до зарезу" нужны были эти деньги. Остается только гадать, что произошло бы, останься этот чип в Стране Восходящего Солнца. Вполне возможно, японцы подозревали о перспективах уплывающей из их рук разработки. Тогда, пожалуй, волна компьютеризации нахлынула бы не с Запада, а с Востока.

Подробнее

Источник питания

Информация пополнение в коллекции 12.01.2009

Переменное напряжение питающей сети поступает через предохранитель ПР и сетевой фильтр на выключатель ВК, установленный обычно на панели ВМ. С выключателя сетевое напряжение подводится через термистор к петле размагничивания ЭЛТ и выпрямителю, на выходе которого подключен электрический конденсатор С. На этом конденсаторе получается (при напряжении питающей сети 220 В) постоянное напряжение величиной до 340 В. Для уменьшения стартового тока заряда этого конденсатора в цепь на входе выпрямительного моста иногда включают термистор, который в момент включения имеет сопротивление десятки Ом, а после его нагрева сопротивление падает до нескольких Ом. Это предохраняет диодный мост от чрезмерных перегрузок в момент включения ВМ. Постоянное напряжение от выпрямителя поступает на последовательно соединенные первичную обмотку силового трансформатора и ключевой транзистор для создания импульсов тока в этой цепи. Схема управления ключом обеспечивает задание частоты следования импульсов и их длительности (ШИМ) для регулирования выходных напряжений ИП. Сигнал о величине выходного из выходных выпрямителей В через элемент гальванической развязки, в качестве которого может использовать оптрон или импульсный трансформатор. На схему управления ключом могут поступать также сигналы для синхронизации рабочей частоты ИП с частотой строчной развертки, схем защиты по аварийным перегрузкам и схем отключения ИП при отсутствии на входе импульсов синхронизации от компьютера. Выходные выпрямители, подключенные к вторичным обмоткам силового трансформатора, обеспечивают получение необходимых постоянных питающих напряжений для всех узлов ВМ.

Подробнее

Автоматическая коммутация

Информация пополнение в коллекции 12.01.2009

Устройства станционной сигнализации предназначены для контроля действия приборов АТС и создания оптических и акустических сигналов при их повреждениях или неправильной работе. По степени важности различают следующие виды сигналов: аварийные, групповые и отдельные. К аварийным относятся сигналы, вызванные перегоранием предохранителей: рядового, стативных СВУ, МГ, КП, КСА, ПЭУ, АОН, АК-АВ, платы маркера АК-АВ. Групповые сигналы появляются при перегорании всех стативных предохранителей на 6 А, индивидуальных на платах маркеров АИ-СД, ГИ, ГИК, РИА и на стативе УЗПИ, предохранителя МКС, а также при блокировках маркера АИ-СД, ГИ, ГИК, РИА, РИВ, нарушении работы МКПП, электронных регистров или неисправности в цепях вызывного тока. Отдельные сигналы возникают при перегорании индивидуальных предохранителей приборов, блокировке комплектов РСЛ, безотбойности абонентских устройств. Наиболее важные оптические сигналы сопровождаются непрерывным акустическим сигналом (звонком), остальные прерывистым звонком. Сигналы одного вида появляются немедленно после повреждения, другие, например сигнал о безотбойности абонентской линии, с выдержкой во времени.

Подробнее

KURS

Информация пополнение в коллекции 12.01.2009

Ðåãèñòð ÎÝÂÌ R2 áóäåò õðàíèòü çíà÷åíèÿ Uóïð, â R3 ïîìåùàþòñÿ çíà÷åíèÿ ïðåäûäóùåãî øàãà Uk-1, à â A (àêêóìóëÿòîð) çíà÷åíèÿ ïîñëåäóþùåãî øàãà Uk.  R4 â ïðîöåññå ðàáîòû ïðîãðàììû áóäåì ïîìåùàòü òîëüêî N ïàðàìåòð ïðîãðàììíîé çàäåðæêè.  B áóäåò õðàíèòüñÿ êîëè÷åñòâî øàãîâ äëÿ ïðîãîíà âñåé îáëàñòè íàñòðîéêè. Âûáèðàåì N=135, ò.ê âðåìÿ ïðîãðàììíîé çàäåðæêè ðàâíî 400 ìêñ, à âñÿ ïðîöåäóðà ðåàëèçóåòñÿ â 3 öèêëà, .

Подробнее

Прибор Ультразвуковой отпугиватель грызунов

Информация пополнение в коллекции 12.01.2009

4.Удаление защитного слоя краски. Удалить краску можно различными растворителями: ацетоном, растворителем №646, уайт-спиртом, дихлорэтаном, трихлорэтаном, и другими. Однако все эти процессы с перечисленными растворителями связаны с существенной вредностью для организма человека, пожарной и взрывоопасностями. Поэтому в промышленности разрабатываются и способы удаления краской гидропульпой, по принципу гидропескоструйной обработки. Специальный полуавтоматический агрегат, производит удаление краски струёй воднопесчаной пульпы, поступающий из сопел специальной гидропушки, под давлением 1,5 атм.Плата загружается в приёмный механизм и с помощью группы подающих, вертикально расположенных резиновых валиков, транспортируется через камеры агрегата. Затем подаётся в камеру промывки и сушки. Такой способ удаления краски полностью исключает все неприятности химических способов. Кроме этого, одновременно с краской с печатных проводников удаляется оксидная плёнка. На данной установке можно обрабатывать платы размерами от 20050 мм до 500250 мм. В установке предусмотрено три скорости подачи заготовок 2,1; 1,56; 1,12 м/мин., обеспечивающие среднюю производительность 120 погонных метров в час или 18 м2/час. Установка обслуживается одним человеком.

Подробнее
<< < 2 3 4 5 6 7 8 9 10 > >>