Математика и статистика

Математика и статистика

Пьер Ферма и его теорема

Контрольная работа пополнение в коллекции 13.06.2012

, но что касается алгебры... Скажите, - возмущенно добавил он, - этично ли задавать мне такой вопрос? Лицо Саймона окаменело, но глаза сияли. - А вы предпочли бы сбегать за сто двадцать тысяч километров и принести какой-нибудь предмет величиной с гидростанцию Боулдер Дэм, - поддразнил он черта. - Время и пространство для вас легкое дело, правда? Что ж, сожалею, но я предпочитаю свой вопрос. Он очень прост, - успокаивающе добавил Саймон. - Речь идет о положительных целых числах. - А что такое положительное число? - взволновался черт. - И почему вы хотите, чтобы оно было целым? - Выразимся точнее, - сказал Саймон, пропустив вопрос дьявола мимо ушей. - Теорема Ферма утверждает, что для любого положительного целого числа n больше двух уравнение Xn + Yn = Zn не имеет решения в положительных целых числах. - А что это значит?.. - Помните, вы должны дать ответ. - А кто будет судьей - вы? - Нет, - ласково ответил Саймон. - Я не считаю себя достаточно компетентным, хотя бился над этой проблемой несколько лет. Если вы явитесь с ответом, мы представим его в солидный университет.">Подписывайтесь, - поторопил черт, и Саймон, расправив плечи, поставил свое имя. Поставив и свою подпись с пышным росчерком, дьявол потер руки, окинул Саймона откровенно собственническим взглядом и весело сказал: - Ну, выкладывайте свой вопрос! Как только я на него отвечу, мы отправимся. Мне надо посетить сегодня еще одного клиента, а времени в обрез. - Хорошо, - сказал Саймон и глубоко вздохнул. - Мой вопрос такой: верна или не верна великая теорема Ферма? Дьявол проглотил слюну. В первый раз его самоуверенность поколебалась. - Великая - чья? Что? - глухим голосом спросил он. - Великая теорема Ферма. Это математическое положение, которое Ферма, французский математик семнадцатого века, якобы доказал. Однако его доказательство не было записано, и до сего дня никто не знает, верна теорема или нет. - Когда Саймон увидел физиономию черта, у него дрогнули губы. - Ну вот, ступайте и займитесь! - Математика! - в ужасе воскликнул хвостатый. - Вы думаете, у меня было время изучать такие штуки? Я проходил тривиум и квадривиум <http://jtdigest.narod.ru/dig3_02/fant2.htm>, но что касается алгебры... Скажите, - возмущенно добавил он, - этично ли задавать мне такой вопрос? Лицо Саймона окаменело, но глаза сияли. - А вы предпочли бы сбегать за сто двадцать тысяч километров и принести какой-нибудь предмет величиной с гидростанцию Боулдер Дэм, - поддразнил он черта. - Время и пространство для вас легкое дело, правда? Что ж, сожалею, но я предпочитаю свой вопрос. Он очень прост, - успокаивающе добавил Саймон. - Речь идет о положительных целых числах. - А что такое положительное число? - взволновался черт. - И почему вы хотите, чтобы оно было целым? - Выразимся точнее, - сказал Саймон, пропустив вопрос дьявола мимо ушей. - Теорема Ферма утверждает, что для любого положительного целого числа n больше двух уравнение Xn + Yn = Zn не имеет решения в положительных целых числах. - А что это значит?.. - Помните, вы должны дать ответ. - А кто будет судьей - вы? - Нет, - ласково ответил Саймон. - Я не считаю себя достаточно компетентным, хотя бился над этой проблемой несколько лет. Если вы явитесь с ответом, мы представим его в солидный университет.

Подробнее

Интегрирование обыкновенных дифференциальных уравнений

Контрольная работа пополнение в коллекции 12.06.2012

kursach2(a, y0, t0, tm, h)= [2, 1.02, 2.01]; % коэффициенты ДУ= [ 0, 1, 0; 0, 0, 1; - 1/a(1), - a(3)/a(1), - a(2)/a(1)]; % матрица A= 0;= 20;= [0; 0; 10/a(1)];= 1; % шаг= [0; 0; 0]; % начальные условия= (tm - t0)/h; % количество точекk = 1:n + 1 % цикл по всем точкам для задания аналитического решения(k) = t0 + (k - 1) * h;(k) = 10. -8.03212851405622489959839357430 * exp(-.5 * T(k)) - 4.02595393919660286599384034488 * exp(-.5e-2 * T(k)) * sin(.999987499921874023422240943905 * T(k)) - 1.96787148594377510040160642570 * exp(- .500000000000000000000000000000e-2 * T(k)) * cos(.999987499921874023422240943905 * T(k));= odeset('RelTol', 1e-10, 'AbsTol', 1e-5); % точность ode45

Подробнее

Численное решение задачи Коши

Контрольная работа пополнение в коллекции 12.06.2012

описывает движение груза массы m, подвешенного к концу пружины. Здесь x(t) - смещение груза от положения равновесия, H - константа, характеризующая силу сопротивления среды, k -коэффициент упругости пружины, f(t) - внешняя сила. Начальные условия: - смещение груза в начальный момент времени t=0, - скорость груза в начальный момент времени. Промоделировать движение груза на временном отрезке [0,T] при заданных в индивидуальном варианте трех наборах (I, II, III) значений параметров задачи. Для каждого набора по найденной таблице (или графику) решения задачи определить максимальное и минимальное значения функции x(t) и моменты времени, в которые эти значения достигаются. Предложить свой вариант задания параметров, при которых характер колебаний груза существенно отличается от рассмотренного ранее.

Подробнее

Численные методы анализа

Информация пополнение в коллекции 09.06.2012

Численное дифференцирование - некорректная задача, так как отсутствует устойчивость решения. При численном дифференцировании приходится вычитать друг из друга близкие значения функции. Это приводит к уничтожению первых значащих цифр, т.е. к потере части достоверных знаков числа. А так как значения функции обычно известны с определенной погрешностью, то все значащие цифры могут быть потеряны. На графике кривая (1) соответствует уменьшению погрешности дифференцирования при уменьшении шага; кривая (2) представляет собой неограниченно возрастающий вклад неустранимой погрешности исходных данных - значений функции y(x). Критерий выхода за оптимальный шаг при его уменьшении - решение: зависимость результатов вычислений становится нерегулярно зависящей от величины шага.

Подробнее

Интегрирование иррациональных функций

Курсовой проект пополнение в коллекции 06.06.2012

В процессе обучения, рассмотрев тему «Производные», мы переходим к разделу «Интегралы». Данная тема является не только объёмной, но и достаточно сложной, особенно, достаточно сравнить процесс вычисления производных и процесс нахождения интегралов различных функций. Изучая эту тему, многие студенты сталкиваются с огромной проблемой. Это связано с тем, что существует большое количество функций, отыскать первообразную для которых не всегда легко, и ещё сложнее выразить эту первообразную через элементарные функции. Примером таких функций являются иррациональные функции.

Подробнее

Конечные сверхразрешимые группы

Курсовой проект пополнение в коллекции 05.06.2012

Теория групп имеет большую и содержательную историю. Возникшая в связи с теорией Галуа и для нужд этой теории, она развивалась сперва в качестве теории конечных групп подстановок (Коши, Жордан, Силов). Довольно скоро обнаружилось, однако, что для большинства вопросов, интересовавших эту теорию, не является существенным тот специальный материал-подстановки,-который использовался для построения групп, и что на самом деле речь идет об изучении свойств одной только алгебраической операции, определенной в множестве, состоящем из конечного числа элементов произвольной природы. Это открытие, представляющееся в настоящее время тривиалным, оказалось в действительности весьма плодотворным и привело к созданию общей теории конечных групп. Правда, переход от групп подстановок к произвольным конечным группам не называл по существу расширения запаса изучаемых объектов, однако он перевел теорию на аксиоматические основы, придав ей стройность и прозрачность и облегчив этим ее дальнейшее развитие.

Подробнее

Характеристика глобального вектора приоритета альтернатив

Контрольная работа пополнение в коллекции 04.06.2012

Найдем результирующий вектор приоритетов альтернатив, используя формулу: W=[A]*[S]*[L]*X*[B]. На матрицу [S] не умножаем, т.к. матрица [A] получена не методом копирования и не методом стандартов.

Подробнее

Комплексные числа

Контрольная работа пополнение в коллекции 28.05.2012

) для представления числа в алгебраической форме избавимся от выражения с i в знаменателе. Для этого домножим числитель и знаменатель дроби на комплексное число сопряженное знаменателю.

Подробнее

Векторы линейного преобразования

Контрольная работа пополнение в коллекции 28.05.2012

Получили целое семейство векторов. Для получения конкретного значения подставим вместо параметра произвольное значение, например . Тогда

Подробнее

Совместность и решение системы линейных уравнений

Контрольная работа пополнение в коллекции 28.05.2012

Исходная система уравнений в матричной форме имеет вид: AX=B. Ее решение можно записать в виде X=A-1B, где A-1 - обратная матрица к матрице коэффициентов системы.

Подробнее

Пирамида с треугольником в основании

Контрольная работа пополнение в коллекции 28.05.2012

Площадь основания пирамиды равна площади грани АBC и равна половине площади параллелограмма, построенного на векторах и . Площадь же параллелограмма равна векторному произведению векторов и . Произведение векторов численно равно модулю нормального вектора. Т.о.

Подробнее

Определение вероятности события

Контрольная работа пополнение в коллекции 28.05.2012

Сборщик получает 50% деталей завода № I, 30% - завода №2, 20% - завода № 3. Вероятность того, что деталь первого завода отличного качества равна 0,7, для второго и третьего заводов эти вероятности соответственно равны 0,8 и 0,9. Наудачу взятая сборщиком деталь оказалась отличного качества. Найти вероятность того, что эта деталь изготовлена заводом № I.

Подробнее

Теория вероятности

Контрольная работа пополнение в коллекции 27.05.2012

Вероятность поражения для каждого из трех стрелков соответственно равны 0,7 ; 0,5; 0,6.Случайная величина X- число поражений цели при условии , что каждый стрелок сделал по одному выстрелу .

  1. Построить многоугольник распределения.
  2. Найти функцию распределения F(x) и построить её график.
  3. Вычислить математическое ожидание, дисперсию, среднеквадратическое отклонение, моду.
Подробнее

Великая теорема Ферма: история и обзор подходов к доказательству

Дипломная работа пополнение в коллекции 25.05.2012

№тройка№тройка11 + 8 = 9 > r(1×23×32) = 621 + 48 = 49 > r(1×3×24×72) = 4231 + 63 = 64 > r(1×(32×7)×26) = 4241 + 80 = 81 > r(1×(24×5)×34) = 3055 + 27 = 32 > r(5×33×25) = 30632 + 49 = 81 > r(25×72×34) = 4273 + 125 = 128 > r(3×53×27) = 3084 + 121 = 125 > r(22×112×53) = 11091 + 224 = 225 > r(1×(25×7)×(32×52) = 210101 + 242 = 243 > r(1×(2×112)×35) = 66111 + 288 = 289 > r(1×(25×32)×172) = 102122 + 243 = 245 > r(2×35×(5×72) = 210137 + 243 = 250 > r(7×35×(2×53)) = 2101413 + 243 = 256 > r(13×35×28) = 781581 + 175 = 256 > r(34×(52×7)×28) = 21016100 + 243 = 343 > r((22×52)×35×73) = 2101732 + 343 = 375 > r(25×73×(3×53)) = 21018169 + 343 = 512 > r(132×73×29) = 182191 + 512 = 513 > r(1×29×(33×19)) = 114205 + 507 = 512 > r(5×(3×132)×29) = 3902127 + 512 = 539 > r(33×29×(72×11)) = 4622249 + 576 = 625 > r(72×(26×32)×54) = 2102381 + 544 = 625 > r(34×(26×17)×54) = 51024200 + 529 = 729 > r((23×52)×232×36) = 690251 + 624 = 625 > r(1×(24×3×13)×54) = 390261 + 675 = 676 > r(1×(33×52)×(22×132)) = 39027104 + 625 = 729 > r((23×13)×54×36) = 39028343 + 625 = 968 > r(73×54×(23×112)) = 770291 + 728 = 729 > r(1×(23×91)×36) = 5463025 + 704 = 729 > r(52×(26×11)×36) = 330311 + 960 = 961 > r(1×(26×3×5)×312) = 930

Подробнее

Египетская математика

Информация пополнение в коллекции 23.05.2012

Сохранились примерно о начало второго тысячелетия до нашей эры. К этому времени относится расцвет двух великих цивилизаций древнего Востока - Египта и Вавилона. Эти государства были земледельческими. Площадь, пригодную для земледелия, можно было увеличить путём проведения оросительных каналов или путём осушения болот. Работы по проведению каналов и осушению болот, необходимость устанавливать границы между полями потребовали создания сельских общин. Поэтому наряду с натуральным хозяйством этих общин появляется распределение, связанное со значительными общественными работами, а также частыми войнами. Организация централизованного государства приводит к появлению централизованной религии, вокруг дворцов и храмов возникают города. Которые становятся центром торговли.

Подробнее

Методы решения нелинейных дифференциальных уравнений

Курсовой проект пополнение в коллекции 23.05.2012

Обычно физику делят на несколько разделов: механику, электричество и т. п., и мы «проходим» эти разделы один за другим. Но, то и дело происходят странные вещи: переходя к новым разделам физики и даже к другим наукам, мы сталкиваемся с уравнениями, почти не отличающимися от уже изученных нами ранее. Таким образом, многие явления имеют аналогию в совсем других областях физики. Простейший пример: распространение звуковых волн во многом похоже на распространение световых волн. Если мы достаточно подробно изучим акустику, то обнаружим потом, что «прошли» довольно большую часть оптики. Таким образом, изучение явлений в одной области физики может оказаться полезным при изучении других ее разделов. Хорошо с самого начала предвидеть такое возможное расширение, иначе могут возникнуть недоумения, почему мы тратим столько времени и сил на изучение небольшой задачи механики. Гармонический осциллятор, на примере которого мы проводим сравнение двух методов, будет встречаться нам почти всюду. Это уравнение непрестанно встречается в физике и в других науках и фактически описывает столь многие явления, что, право же, стоит того, чтобы изучить его лучше. Такое уравнение описывает колебания грузика на пружинке, колебания заряда, текущего по электрической цепи, колебания камертона, порождающие звуковые волны, колебания электронов в атоме, порождающие световые волны. Добавим сюда уравнения, описывающие действия датчиков-регуляторов, например поддерживающих заданную температуру термостата, сложные взаимодействия в химических реакциях и (уже совсем неожиданно) уравнения, относящиеся к росту колонии бактерий, которых одновременно и кормят и травят ядом, или к размножению лис, питающихся кроликами, которые в свою очередь едят траву. Осцилляторы рассматриваются и в экономике, в анализе финансовых рынков: кривая темпа, которая колеблется вокруг нулевой линии - технический индикатор, показывающий состояние перекупленности или перепроданности рынка. Мы привели очень неполный список явлений, которые описываются почти теми же уравнениями, что и гармонический осциллятор. Эти уравнения называются линейными дифференциальными уравнениями с постоянными коэффициентами.

Подробнее

Регрессионный анализ в задачах психолого-педагогических исследований

Реферат пополнение в коллекции 22.05.2012

полвозрастхоббисколько времени уходит на интернеткол-во времени, которое уходит на развлечениевстречаетесь ли вы с кем - нибудьиспытывали ли вы чувство влюбленностисколько времени уходит на дом. Хлопотыкруг общениякакие места вы посещаетевремя разговоров по телефонучестно ли отвечали на вопросысредняя успеваемость2345678910111213141516117 11бслушать музыку1-2ч1ч003чоднокл., друзьядома10мин14117 11бхудож., спорт3 чнет012ч.однокл., друзьяхудож.1ч13,9018 11бмного2-3ч.нет012-3чоднокл., друзьяшкола, секция113,9116 11бтанцы. Спорт1 раз в 3 недредко002ч.друзья. Сверстникивезде014,5117 11бпеть. Танцевать3ч.1ч.008чоднокл., друзьякухня, детская5ч14,1016 11бфутбол, компьют.3-4чиногда001чоднокл., друзьяшкола, секция1ч13,8017 11бмуз.книги.комп.англ.35% развл. 65% учеба3ч011,5ранообразныйразные0,5ч04,2017 11ббаскетбол. Музыка3ч.2ч01-однокл., друзья--13,8017 11б-2-3ч.-11-однокл., друзья--0,54117 11бмузыка6ч0,50124чоднокл., друзьягуляюмного13,7117 11бмузыка, бильярд3ч.1ч013чоднокл., друзьякинотеатр1ч14117 11бчитать, музыка--004чоднокл., друзьякухня, детская-14,6117 11бчитать, музыка3-4ч1ч002-3чоднокл., друзьядома1,5ч14,2117 11б-немного2ч018чоднокл., друзьякино, кафе1ч13,9117 11бмузыка2-3ч.1ч012-3чоднокл., друзья, соседикино, кафе2-3ч13,7017 11ббаскетбол, гитара, комп.8ч3ч012-3ч.разн. круг общенияразные0,5ч13,2017 11бгитара, комп.музыка12ч0,25ч111чоднокл.школа1ч13,3117 11бвышивание,рисование2-3 дняредко012-3чоднокл.дома1ч14,1017 11вборьба, плавание5ч0000,5чдрузья по выпивкебассейн, подъзд0,5ч13,9017 11внет4ч1ч011,5школа, друзья, двордвор0,3 ч13,4117 11вкапоэйра, интернет6,5ч3112ч.однокл.,друзьятренировки, улица2ч13,2117 11вбольшой теннис, конный спорт4ч6ч111чразнообразныйразвлекательные места3ч13,6117 11врисование, бассейн, курсы1ч0,5112ч.разнообразныйклубы, кафе, кинотеатры, магазины0,25ч14117 11вгулять, читать3ч.1-1,5ч112ч.друзья в школеаллейки, гости3ч14,1117 11вмузыка, иностр.3ч.2ч112ч.друзьякафе, улица3ч14017 11вфутбол, компьют.1ч1ч012ч.с однокл.в развл.центрахмало13,6017 11вфутбол, компьют.2-3ч.0,5ч012-3ч.со всемиразные2ч13,5017 11вконный спортмного0-03чоднокл., друзьядомамало13,2017 11вфутбол5-6ч016ч0большойшкола-13,3118 11вмузыкамало1-3ч011чдрузьякак придется0,65ч13,7118 11вмуз.театр.искусство2-4ч-010,25родственники, друзьяулицы города1ч13,9116 11входить по магазинамвесь день3ч016чоднокл.мега и токсим2,5ч13117 11ввсе понемногу6ч6ч016чподругимега, токсим-13,2117 11втанцы, искусство, музыка2ч3ч113чдрузья, родственникидворец школьн.,улица2ч14117 11вкаратэ-до2ч2ч012ч.со всемиоткр.помещения1ч14,1116 11вмузыка2-3ч.3ч012ч.однокл.по разному2-3ч13,9117 11вконьки, плавание5ч2-3ч013-4чоднокл, друзьямега, парк,откр.пом.1,5-2ч13,5117 11втаэквон-до6ч3ч012ч.со всемипарк6ч13,4117 11афотошоп6ч-011чдрузьякафе, улица4ч13,7017 11авышивание, книги0ч0ч11-обширныйбиблиотека1ч14,7018 11арэп, футбол3-4ч-011-2чдрузьяспортзал0,5ч14,5018 11абаскетбол1ч-01---3ч04117 11абассейн2ч-012,5чодноклю, друзьяпарк1ч14,1117 11атанцы,рисов..футбол2ч-113чдрузья, родителидома0,514017 11атехнология, худож.1-2ч-013-4чоднокл., друзьяказактелеком0,75ч14,3117 11авышивание крестиком6ч-112ч.широкийнет своб.врмени2ч13,8117 11ааппликация6ч-013чширокийнет своб.времени2ч13,7117 11амузыка, читать3ч.-013чоднокл.нет своб. времени-15117 11амузыка, бассейн5ч-012-3чоднокл.курсы-14,5117 11а-7ч-112-3чоднокл.друзья,семьяДарын0,3ч14,8117 11амузыка3ч.-003чдрузья детствакафе, улица-14,2116 11арисование,музыка,кухня2ч-001,5чодноклассникиторговые дома0,514,3117 11амузыка, кино6ч-013чоднокл.друзья,семьякинотеатр0,5ч13,9117 11а-2ч-110однокл.курсы5ч03,4117 11апракт., бассейн2ч-011чширокийДарын0,2ч14,6017 11абассейн, футбол1ч-010,5чоднокл.друзья,семьяшкола5ч03,4017 11афутбол3ч.-012ч.друзьяспортзал2ч13,8017 11амузыка, компьют.5-6ч-012ч.однокл.школа5-6ч03,1017 11а-6ч-000,6ч--2ч13,3 да нет

Подробнее

Статистическая обработка результатов измерений

Методическое пособие пополнение в коллекции 16.05.2012

Номер точки iXiFn (Xi) = Ф (Zi) Zi17,380,0303-1,876427,660,0606-1,549737,680,0909-1,335247,720,1212-1,168957,740,1515-1,030067,750,1818-0,908577,790,2121-0,799187,850,2424-0,698597,850,2727-0,6046107,870,3030-0,5157117,870,3333-0,4307127,910,3636-0,3488137,920,3939-0,2691147,930,4242-0, 1911157,930,4545-0,1142167,940,4848-0,0380177,940,51520,0380188,060,54550,1142198,080,57580, 1911208,110,60610,2691218,130,63640,3488228,160,66670,4307238,160,69700,5157248,170,72730,6046258,170,75760,6985268,220,78790,7991278,30,81820,9085288,30,84851,0300298,310,87881,1689308,330,90911,3352318,340,93941,5497328,370,96971,8764

Подробнее

Математическая статистика и её частные методы

Курсовой проект пополнение в коллекции 16.05.2012

Однако метод не всегда эффективно снижает размерность при заданных ограничениях на точность δk. Прямые и плоскости не всегда обеспечивают хорошую аппроксимацию. Например, данные могут с хорошей точностью следовать какой-нибудь кривой, а эта кривая может быть сложно расположена в пространстве данных. В этом случае метод главных компонент для приемлемой точности потребует нескольких компонент (вместо одной), или вообще не даст снижения размерности при приемлемой точности. Для работы с такими «кривыми» главными компонентами изобретен метод главных многообразий и различные версии нелинейного метода главных компонент. Данные сложной топологии апроксимируются при помощи саморегулирующихся карт Кархунена или топологических грамматик Зиновьева, Горбаня и Саммера"> <http://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D1%8B%D1%85_%D0%BA%D0%BE%D0%BC%D0%BF%D0%BE%D0%BD%D0%B5%D0%BD%D1%82>. Если данные статистически порождены с распределением, сильно отличающимся от нормального, то для аппроксимации распределения полезно перейти от главных компонент к независимым компонентам Гидринена, Кахранена и Ойя, которые уже не ортогональны в исходном скалярном произведении. Наконец, для изотропного распределения (даже нормального) вместо эллипсоида рассеяния получаем шар, и уменьшить размерность методами аппроксимации невозможно.

Подробнее
<< < 1 2 3 4 5 6 7 > >>