Математика и статистика

Математика и статистика

Транспортная задача линейного программирования

Курсовой проект пополнение в коллекции 14.09.2006

Алгоритм и методы решения транспортной задачи могут быть использованы при решении некоторых экономических задач, не имеющих ничего общего с транспортировкой груза. В этом случае величины тарифов cij имеют различный смысл в зависимости от конкретной экономической задачи. К таким задачам относятся следующие:

  1. оптимальное закрепление за станками операций по обработке деталей. В них cij является таким экономическим показателем, как производительность. Задача позволяет определить, сколько времени и на какой операции нужно использовать каждый из станков, чтобы обработать максимальное количество деталей. Так как транспортная задача требует нахождения минимума, то значения cij берутся с отрицательным знаком;
  2. оптимальные назначения, или проблема выбора. Имеется m механизмов, которые могут выполнять m различных работ с производительностью cij. Задача позволяет определить, какой механизм и на какую работу надо назначить, чтобы добиться максимальной производительности;
  3. задача о сокращении производства с учетом суммарных расходов на изготовление и транспортировку продукции;
  4. увеличение производительности автомобильного транспорта за счет минимизации порожнего пробега. Уменьшение порожнего пробега сократит количество автомобилей для перевозок, увеличив их производительность;
  5. решение задач с помощью метода запрещения перевозок. Используется в том случае, если груз от некоторого поставщика по каким-то причинам не может быть отправлен одному из потребителей. Данное ограничение можно учесть, присвоив соответствующей клетке достаточно большое значение стоимости, тем самым в эту клетку не будут производиться перевозки.
Подробнее

Вероятность случайного события

Информация пополнение в коллекции 14.09.2006

Вначале определим вероятность регулярного случайного события как число, около которого колеблется относительная частота в длинных сериях испытаний. Затем введем понятие равновозможности, равновероятности двух событий. Смысл этого понятия ясен интуитивно, цель введения - мы хотим определить математически понятие вероятности сводя его к более простому не определяемому понятию равновероятности. Наличие равновероятности некоторых событий являющихся исходами некоторого испытания устанавливается из “общих соображений”, не доказывается математически и не может быть доказано, не нуждается в доказательстве как первичное. Например, при бросании игральной кости выпадение 1, 2, … , 6 очков считают событиями равновероятными (или “почти” равновероятными) исходя из предполагаемой физической однородности материала кости и геометрической правильности, то есть считая кость идеальным кубом. Если в результате испытания возможно наступление равновозможных событий, никакие два из которых не могут наступить одновременно, то вероятность каждого из этих событий определяется как , а сами события называются элементарными событиями или элементарными исходами.

Подробнее

Метод конструирования задач

Информация пополнение в коллекции 14.09.2006

Варьирование условий - способ конструирования задач, который может изменить решение и результат задачи путем замены всего одного слова, например, задача на построение треугольника по трем сторонам имеет элементарное решение, а если заменить "стороны" на "биссектрисы", решение многократно усложняется. Варьирование условий зачастую приводит к образованию целых циклов задач, очень похожих друг на друга по звучанию, но совершенно различных по типу и сложности решения. Варьирование бывает разным: в первом случае изменяется определение или термин, во втором - равенство или неравенство, причем эти два способа довольно сильно отличаются на практике, хотя и схожи в теории.

Подробнее

Однополостный гиперболоид

Информация пополнение в коллекции 14.09.2006

Рассмотрим линии пересечения с плоскостями, параллельными плоскости OXY. Все уравнения линий пересечений будут получаться из уравнения плоскости, в котором z будет заменена на некоторое число, равное расстоянию от пересекающей плоскости до плоскости OXY. Для более наглядного представления, я изобразил все полученные кривые в виде проекций на плоскость OXY. Изображения кривых представлены выше.

Подробнее

Призма

Информация пополнение в коллекции 14.09.2006

Теорема, в которой утверждается, что все диагонали параллелепипеда пересекаются в одной точке О, в которой они делятся пополам (рис ), напоминает аналогичное предложение из планиметрии: диагонали параллелограмма пересекаются в точке О, являющейся их серединой (рис. ). Точка О - это центр симметрии параллелограмма. Аналогично называют и точку О центром симметрии параллелепипеда, так как вершины А и С1, В и D1, СиА1, D и В1 симметричны относительно точки О. Впервые понятие центра симметрии встречается в ХVI в. в одной из теорем Клавиуса, гласящей: если параллелепипед рассекается плоскостью, проходящей через центр, то он разбивается пополам и, наоборот, если параллелепипед рассекается пополам, то плоскость проходит через центр. Лежандр, который впервые ввел в элементарную геометрию элементы учения о симметрии, говорит только о симметрии относительно плоскости и дает следующее определение: две точки A и B симметричны относительно плоскости a, если последняя перпендикулярна к АВ в середине этого отрезка. Лежандр показывает, что у прямого параллелепипеда имеются 3 плоскости симметрии, перпендикулярные к ребрам, а у куба 9 плоскостей симметрии, из которых 3 перпендикулярны к ребрам, а другие 6 проходят через диагонали граней.

Подробнее

Производная, дифференциал и интеграл

Контрольная работа пополнение в коллекции 14.09.2006

 

  1. найти область определения функции;
  2. исследовать на четность и нечетность функцию;
  3. найти точки разрыва функции;
  4. найти асимптоты (вертикальные, наклонные и горизонтальные) графика функции;
  5. найти точки пересечения графика функции с координатными осями;
  6. исследовать функцию на монотонность (указав интервалы возрастания и убывания) и экстремум;
  7. определить интервалы выпуклости и вогнутости графика функции, точки перегиба;
  8. при необходимости вычислить значения функции в дополнительных точках;
  9. построить схематично график функции, используя результаты полученные в пунктах 1-8.
Подробнее

Производная и ее применение в алгебре, геометрии, физике

Статья пополнение в коллекции 14.09.2006

 

  1. М64 И. Ф. Суворов “Курс высшей математики для техникумов”. М.: Просвещение, 1964.
  2. М 71 В. В. Ткачук “Математикаабитуриенту”. М.: Просвещение, 1980.
  3. P60 Д. Е. Родионов, Е. М. Родионов “Стереометрия в задачах”. М.: Учебный центр “Ориентир” “Светоч”, 1998.
  4. P60 В. А. Колесников. “Физика. Теория и методы решения конкурсных задач. Часть II”. М.: Учебный центр “Ориентир” “Светоч”, 2000.
  5. Л77 Л. М. Лоповок “1000 проблемных задач по математике”. М.: Просвещение, 1995.
  6. М89 Д. Т. Письменный “Математика для старшеклассников. Теория\задачи”. М.: “Айрис”, “Рольф”, 1996.
  7. С 82 М. Я. Выгодский “Справочник по элементарной математике”. Спб.: Союз, 1997.
  8. В20 В. И. Васюков, И. С. Григорьян, А. Б. Зимин, В. П. Карасева “Три подсказки и любая задача решена! Часть III”. М.: Учебный центр “Ориентир” при МГТУ им. Н. Э. Баумана, 2000.
  9. Э 61 В. А. Чуянов “Энциклопедический словарь юного физика”. М.: Педагогическа-Пресс, 1999.
  10. Б 27 А. Б. Басков, О. Б. Баскова, Н. В. Мирошин “Математика. Часть 2. Алгебра и начала анализа”. М.: МИФИ, 1997.
Подробнее

Метод Монте-Карло и его применение

Курсовой проект пополнение в коллекции 14.09.2006

Пусть необходимо вычислить линейный функционал , где , причём для интегрального оператора K с ядром выполняется условие, обеспечивающее сходимость ряда Неймана: . Цепь Маркова определяется начальной плотностью и переходной плотностью ; вероятность обрыва цепи в точке равна . N случайный номер последнего состояния. Далее определяется функционал от траектории цепи, математическое ожидание которого равно . Чаще всего используется так называемая оценка по столкновениям , где , . Если при , и при , то при некотором дополнительном условии . Важность достижения малой дисперсии в знакопостоянном случае показывает следующее утверждение: если и , где , то , а . Моделируя подходящую цепь Маркова на ЭВМ, получают статистическую оценку линейных функционалов от решения интегрального уравнения второго рода. Это даёт возможность и локальной оценки решения на основе представления: , где . Методом Монте-Карло оценка первого собственного значения интегрального оператора осуществляется интерациональным методом на основе соотношения . Все рассмотренные результаты почти автоматически распространяются на системы линейных алгебраических уравнений вида . Решение дифференциальных уравнений осуществляется методом Монте-Карло на базе соответствующих интегральных соотношений.

Подробнее

Теория вероятностей

Контрольная работа пополнение в коллекции 14.09.2006

13

Подробнее

Приложения определенного интеграла к решению некоторых задач механики и физики

Методическое пособие пополнение в коллекции 14.09.2006

Теорема Гульдена. Площадь поверхности, образованной вращением дуги плоской кривой вокруг оси, лежащей в плоскости дуги и ее не пересекающей, равна произведению длины дуги на длину окружности, описываемой ее центром масс.

Подробнее

История становления и развития математического моделирования

Информация пополнение в коллекции 14.09.2006

В век интернета и космических технологий трудно представить инженера-разработчика без компьютера. Современные исследования настолько наукоёмки, что просто физически невозможно обойтись без помощи вычислительной машины. Колоссальные объёмы информации требуется анализировать в процессе исследования процессов в различных областях науки и техники. В теплоэнергетике исследуются всевозможные процессы горения топлива в различных моделях топок, процессы течения парожидкостных смесей в проточных частях турбогенераторов (расчёт нагрева металла и его расширение при различных граничных условиях, основывается на решении уравнений теплопроводности) и расплавленных металлов, являющихся теплоносителем первого контура, в парогенераторах атомных электрических станций, исследуется влияние струй пара на поверхность лопаток турбины, что необходимо для предотвращения их коррозионного износа, так же исследуются процессы протекания ядерных реакций в тепловыделяющих элементах ( ТВЭЛах ) и т.д. и т.п. На самом деле большинство процессов в теплоэнергетике уже давно изучено. Исследования проходят по оптимизации этих процессов и изучению глубинной сути явлений для достижения максимального эффекта при разработке энергетического оборудования. Здесь и нужна математическая модель. Вообще математическое моделирование возникло с возникновением вычислительной техники. Это обусловлено потребностью человека в различных областях. Человечество требует комфорта. Именно для нужд растущего населения Земли необходимо развитие науки и техники (исследования космоса, исследование протекающих в земной коре процессов, прогнозирование землетрясений, прогнозирование погоды, исследования глобальных изменений климата, электроника, наземный, водный, подводный экологически чистый транспорт, аэродинамика, внедрения новых экозащитных технологий, разработка новых материалов и т.д.). Становление математического моделирования проходило с развитием промышленности, научного знания и что греха таить является детищем гонки вооружений между странами. Именно военные изобрели интернет и именно они широко используют моделирование (начиная от бактериологического оружия и заканчивая моделированием ядерных, атомных, термоядерных взрывов на суперкомпьютерах). Исследования по механике жидкости и газа на основе уравнений Навье Стокса имеют в нашей стране давние традиции. Начало им положено ещё в первой половине 60-х годов в трудах участников семинара НИИ ВЦ МГУ по численным методам аэромеханики, работавшего под руководством Г.И. Петрова, Л.А. Чудова, Г.Ф. Теленина, Г.С. Рослякова. Эти работы успешно развивались благодаря успешным достижениям советских учёных в вычислительной математике. Среди многих рассматривавшихся в то время классов задач гидро- и аэродинамики, решение которых не могло быть получено в рамках теории пограничного слоя или невязкого газа (отрывные течения, взаимодействие ударной волны и пограничного слоя, структура ударной волны и т.д.), в работах В.И. Полежаева было значительно продвинуто изучение естественно-конвективных процессов. Эффективные численные методы и программы, разработанные для этого класса задач, позволили уже на ЭВМ второго поколения решить многие практически важные задачи (изучение эффективности тепловой изоляции, теплообмен и температурное расслоение при хранении жидкости в сосудах, конвекция в глубокой атмосфере для интерпретации данных зондирования атмосферы Венеры, исследование гидромеханики невесомости и анализ результатов технологических экспериментов в космосе), а также исследовать структуру нелинейных конвективных течений.

Подробнее

*-Алгебры и их применение

Дипломная работа пополнение в коллекции 14.09.2006

Пусть ρ1, ρ2 два неприводимых подпредставления π. Им отвечают инвариантные подпространства Н1 и Н2. Пусть Р1 и Р2 проекторы Н на Н1 и Н2. Они коммутируют с π(А). Поэтому ограничение Р2 на Н1 есть оператор, сплетающий ρ1 и ρ2. Следовательно, если Н1 и Н2 не ортогональны, то из пункта 2.3. следует, что ρ1 и ρ2 эквивалентны. Это доказывает, что любое неприводимое подпредставление π эквивалентно одному из πi . Итак, перегруп-
пировав πi , получаем, что π = ν1…..νm, где каждое νi есть кратное ρiνi΄ неприводимого представления νi΄, и νi΄ попарно эквивалентны. Если ρ неприводимое представление π, то предыдущее рассуждение показывает, что соответствующее инвариантное подпространство Н΄ ортогонально всем инвариантным подпространствам Нi, отвечающих νi, кроме одного. Поэтому Н΄ содержится в одном из Нi. Это доказывает, что каждое пространство Нi определяется однозначно: Нi это подпространство Н, порожденное пространствами подпредставлений π, эквивалентных νi΄. Таким образом, доказано предложение.

Подробнее

Применение производной и интеграла для решения уравнений и неравенств

Курсовой проект пополнение в коллекции 14.09.2006

Пусть f(x)=(ln x)/x (1). Существование решений уравнения (1) эквивален-тно наличию значений x1 и x2 (x1<x2) таких, что f(x1)=f(x2). В этом случае пара (x1,x2) является решением уравнения (1). Иными словами, требуется выяснить, найдется ли прямая y=c, пересекающая график функции f по крайней мере в двух различных точках. Для этого исследуем функцию f. Ее производная f/(x)=(1ln x)/x2 в области определения f имеет единственную критическую точку x=e. При 0<x<e f/(x)>0 функция f возрастает, а при x>e f/(x)<0 функция f убывает. Поэтому в точке x=e f принимает свое наибольшее значение (1/e). Так как функция (ln x)/x непрерывна и возрастает на промежутке (0,e], то она на этом промежутке принимает все значения от до 1/е. Аналогично, на промежутке [e,) функция f принимает все значения из (0,1/e]. Из результатов исследования функции f вытекают следующие утверждения:

Подробнее

Применение дистанционного обучения при изучении курса сферической геометрии

Дипломная работа пополнение в коллекции 14.09.2006

Рассмотрим основные принципы проектирования системы дистанционного обучения (СДО). Под принципами мы понимаем определённую систему исходных основных дидактических и других требований к процессу проектирования и обучения в СДО, которая и должна формироваться с учётом этих требований.

  1. Принцип гуманистичности обучения. Этот принцип является определяющим в системе непрерывного интенсивного обучения и усиливается применительно к СДО. Его сущность заключается в обращённости обучения и образовательного процесса в целом к человеку, в создании максимально благоприятных условий для овладения обучающимися социально накопленного опыта, заключённого в содержании обучения, освоении избранной профессии, для развития и проявления творческой индивидуальности, высоких гражданских, нравственных, интеллектуальных и физических качеств, которые обеспечивали бы ему социальную защищённость, безопасное и комфортное существование.
  2. Принцип приоритетности педагогического подхода при проектировании образовательного процесса в СДО. Суть названного принципа состоит в том, что проектирование СДО необходимо начинать с разработки теоретических концепций, создания дидактических моделей тех явлений, которые предполагается реализовать. Опыт компьютеризации позволяет утверждать, что когда приоритетной является педагогическая сторона, система получается более эффективной.
  3. Принцип педагогической целесообразности применения новых информационных технологий. Он требует педагогической оценки эффективности каждого шага проектирования и создания СДО. Поэтому на первый план необходимо ставить не внедрение техники, а соответствующее содержательное наполнение учебных курсов и образовательных услуг.
  4. Принцип выбора содержания образования. Содержание образования СДО должно соответствовать нормативным требованиям Государственного стандарта РФ.
  5. Принцип обеспечения безопасности информации, циркулирующей в СДО. Необходимо предусматривать при необходимости организационные и технические способы безопасного и конфиденциального хранения, передачи и использования нужных сведений, обеспечения её безопасности при хранении, передаче и использовании.
  6. Принцип стартового уровня образования. Эффективное обучение в СДО требует определённого начального набора знаний, умений, навыков.
  7. Принцип соответствия технологий обучения. Технологии обучения должны быть адекватны моделям дистанционного обучения. Так, в традиционных дисциплинарных моделях обучения в качестве организационных форм обучения (видов занятий) используются лекции, семинарные и практические занятия, имитационные или деловые игры, лабораторные занятия, самостоятельная работа, производственная практика, курсовые и дипломные работы, контроль усвоения знаний.
  8. Принцип мобильности обучения. Он заключается в создании информационных сетей, баз и банков знаний и данных для дистанционного обучения, позволяющих обучающемуся корректировать или дополнять свою образовательную программу в необходимом направлении при отсутствии соответствующих услуг в ВУЗе, где он учиться. При этом требуется сохранение информационного инвариантного образования, обеспечивающего возможность перехода из ВУЗа в ВУЗ на обучение по родственным или другим направлениям.
  9. Принцип неантогонистичности дистанционного обучения существующим формам образования. Проектируемая СДО сможет дать необходимый социальный и экономический эффект при условии, если создаваемые и внедряемые информационные технологии станут не инородным элементом в традиционной системе высшего образования, а будут естественным образом интегрированы в него.
Подробнее

Ортогональные полиномы и кривые распределения вероятностей

Дипломная работа пополнение в коллекции 14.09.2006

 

  1. Гмурман В.Е. Теория вероятности и математическая статистика. Учебное пособие для вузов. М.: Высшая школа, 1999
  2. Джексон Д. Ряды Фурье и ортогональные полиномы. М.: Государственное издательство иностранной литературы, 1948
  3. Митропольский А.К. Техника статистических распределений. М.: издательство “Наука”, 1971
  4. Немчинов В.С. Полиномы Чебышева и математическая статистика. М.: издание Московской ордена Ленина сельскохозяйственной академии имени К.А. Тимирязева, 1946
  5. Романовский В. И. Математическая статистика. Издательство Академии Наук УзССР, 1961
  6. Суетин П.К. Классические ортогональные многочлены. М.: издательство “Наука”, 1976
  7. Хинчин А. Я. Цепные дроби. М.: Государственное издательство физико-математической литературы, 1961
  8. Хотимский В. И. Выравнивание статистических рядов по методу наименьших квадратов (способ Чебышева). М.: Государственное статистическое издательство, 1959
Подробнее

Нестандартный анализ

Курсовой проект пополнение в коллекции 14.09.2006

Изложим историко-математические взгляды Робинсона. Робинсон резюмирует стандартный взгляд на историю развития математического анализа в следующих словах: “После длительного периода, в течение которого были определены площади, объемы и касательные в различных частных случаях, во второй половине семнадцатого столетия Ньютоном и (несколько позже, но независимо) Лейбницем была построена общая теория дифференцирования и интегрирования. Касаясь обоснования введенных им понятий, Ньютон обращался то к бесконечно малым, то к пределам, то непосредственно к физической интуиции; его непосредственные последователи предпочитали последнее. С другой стороны, Лейбниц и его последователи развивали теорию исходя из дифференциалов первого и следующих порядков. Технические удобства обозначений, использовавших дифференциалы, привели к быстрому развитию Анализа и его приложений в Европе, где они были приняты. Однако внутренние противоречия этой концепции привели к осознанию того, что необходимы какие-то другие основания. Лагранж считал, что ему удалось найти подходящий путь, взяв за основу тейлоровское разложение функции. Но первое строгое обоснование математического анализа было дано лишь Коши. Основой теории Коши было понятие предела, которое, будучи впервые выдвинуто Ньютоном, впоследствии поддерживалось Даламбером. Более формальное изложение методов Коши было дано Вейерштрассом (которого в некоторой степени предвосхитил Больцано). После создания теория пределов использование бесконечно больших и бесконечно малых превратилось в оборот речи, применяемый в выражениях типа “... стремится к бесконечности”. Дальнейшее развитие теории неархимедовых полей было целиком предоставлено алгебре.”

Подробнее

Методология изучения темы &quot;Признаки параллельности прямых&quot;

Курсовой проект пополнение в коллекции 14.09.2006

Преподаватель должен суметь: 1) надлежащим образом использовать накопленные учащимися знания для развертывания перед ними школьного логического курса геометрии, в котором логическое доказательство выдвигается на первое место, где интуиция играет роль разведки, в опыт отходит на задний план, 2) приучить учащихся находить новые геометрические факты, 3) подкреплять при рассмотрении отдельных вопросов теоретические выводы иллюстрацией их практической ценности и тем самым находить тесную увязку теории с практикой, 4) использовать явления окружающей действительности, опыт и интуицию как стимул для постановки вопроса, отнюдь не заменяя логическое доказательство опытом, 5) приучать учащихся усматривать взаимозависимость между отдельными геометрическими фактами, 6) развить в учащихся наблюдательность, строгость и последовательность в суждениях, любовь к исследованию, 7) научить учащихся пользоваться учебником, вести четкую конспективную запись, выполнять опрятно и точно чертежи и быть всегда готовыми к ответу вот ответственная и сложная задача преподавателя, начиная с первых же занятий по геометрии.

Подробнее

Интересные примеры в метрических пространствах

Контрольная работа пополнение в коллекции 14.09.2006

1. В n-мерном евклидовом пространстве полная ограниченность совпадает с обычной ограниченностью, то есть с возможностью заключить данное множество в достаточно большой куб. Действительно, если такой куб разбить на кубики с ребром , то вершины этих кубиков будут образовывать конечную -сеть в исходном кубе, а значит, и подавно, в любом множестве, лежащем внутри этого куба.

  1. Единичная сфера S в пространстве l2 дает нам пример ограниченного, но не вполне ограниченного множества. Рассмотрим в S точки вида:
Подробнее

Задачи линейной алгебры. Понятие матрицы. Виды матриц. Операции с матрицами. Решение задач на преобр...

Информация пополнение в коллекции 14.09.2006

Определитель (Determinant) матрицы обозначается стандартным математическим символом. Чтобы ввести оператор нахождения определителя матрицы, можно нажать кнопку Determinant (Определитель) на панели инструментов Matrix (Матрица) (рис. 1) или набрать на клавиатуре <|> (нажав клавиши <Shift>+<\>). В результате любого из этих действий появляется местозаполнитель, в который следует поместить матрицу. Чтобы вычислить определить уже введенной матрицы, нужно выполнить следующие действия:

  1. Переместить курсор в документе таким образом, чтобы поместить матрицу между линиями ввода (напоминаем, что линии ввода это вертикальный и горизон-тальный отрезки синего цвета, образующие уголок, указывающий на текущую область редактирования).
  2. Ввести оператор нахождения определителя матрицы.
  3. Ввести знак равенства, чтобы вычислить определитель.
Подробнее

Задачи на наибольшее и наименьшее значения функций

Контрольная работа пополнение в коллекции 14.09.2006

Подробнее
<< < 111 112 113 114 115 116 117 > >>