Химия

Химия

Спирты

Информация пополнение в коллекции 09.12.2008

ведёт к возникновению гастрита язвенной болезни желудка , двенадцатой кишки . Печень , где должно происходить разрушение спирта , не справляясь с нагрузкой , начинает перерождаться в результате возможен цирроз . Проникая в головной мозг спирт отравляюще действует на нервные клетки , что проявляется в нарушении сознания , речи , умственных способностей , в появлении , тяжёлых психических растройств и ведёт к деградации личности . Особенно опасен алкоголь для молодых людей , так как в растущем организме интенсивно протекают процессы обмена веществ и они особенно чувствительны к алкоголическому воздействию . Поэтому у молодых быстрея , чем у взрослых , может появиться заболевание алкоголизм .

Подробнее

Системы химического мониторинга

Реферат пополнение в коллекции 09.12.2008

Кроме того, существенную роль играет аппаратное обеспечение процесса мониторинга. Ввиду того, что основу парка ЭВМ Вузов Украины и нашего университета составляют машины с мощными процессорами III и IV поколений (для процессоров Intel) и VI и VII поколений (для процессоров AMD), а также учитывая высокие пропускные способности существующих линий связи на основе технологии Ethernet и оптоволоконных линий, на аппаратном уровне работа систем мониторинга легко реализуется.ЛИТЕРАТУРА

  1. On-line версия журнала «Химия Украины» доступна по ссылке: http://www.business.dp.ua/ruschem/xu.htm
  2. Доступ к каталогам удобен с использованием навигационной системы Хим РАР (http://www.chemrar.ru/catalogs/main.htm).
  3. В.Колодкин «Создание системы экологического мониторинга в зоне антропогенных воздействий от объектов химико-технологического профиля», журнал «Химическая промышленность», 2002г., № 11, стр. 27-30; электронный вариант статьи: http://www.thesa.ru/chemprom/2002_r/11_02/kolod.pdf
  4. Е.Ю. Орлова "Химия и технология бризантных взрывчатых веществ", М., 1976г.
  5. Гартман Т.Н., Малиновский В.А. " Компьютерное моделирование узла ректификации в производстве изопропилбензола с целью экономии энергозатрат", журнал «Химическая промышленность», 2002г., № 10, стр. 1-19 ;
    электронный вариант статьи: http://www.thesa.ru/chemprom/2002_r/10_02/gartman.pdf .
  6. Е.Н.Малыгин, В.А.Немтинов, С.Я.Егоров " Автоматизированное проектирование генерального плана сооружений биохимической очистки сточных вод", журнал «Химическая промышленность», 2002г., № 12, стр. 1-7;
    электронный вариант статьи: http://www.thesa.ru/chemprom/2002_r/12_02/malygin.pdf
  7. В.А.Островский, М.А.Гетьман, А.А.Малин, М.Б.Щербинин, Ю.В.Островский, Т.Б.Чистякова " Опыт создания гибкого автоматизированного производства субстанций фармацевтических препаратов в соответствии с нормами gmp", журнал «Химическая промышленность», 2003г., № 1, стр. 4-18; электронный вариант статьи: http://www.thesa.ru/chemprom/2003/01_03/ostrov.pdf
  8. П.А. Подкуйко, Л.Я. Царик, Н.В. Зайцев " Планирование эксперимента при получении железосодержащей соли полиакриловой кислоты", журнал «Химическая промышленность», 2003г., № 1, стр. 30-34;
    электронный вариант статьи: http://www.thesa.ru/chemprom/2003/01_03/podku.pdf
  9. Н.Н. Прохоренко, Н.Б. Кондуков, Н.Ю. Шовкопляс " Оценка работоспособности химико-технологических систем", журнал «Химическая промышленность», 2002г., № 8, стр. 1-10; электронный вариант статьи: http://www.thesa.ru/chemprom/2002_r/08_02/prohor.pdf
  10. Т.И. Белая, Т.Б. Чистякова " Математическая модель процесса пуска установки каталитического риформингаядро интеллектуального тренажера", журнал «Химическая промышленность», 2003г., № 2, стр. 41-45;
    электронный вариант статьи: http://www.thesa.ru/chemprom/2003/02_03/belaya.pdf
  11. Ю.В. Островский, Т.Б. Чистякова, А.А. Малин " Система управления производством субстанций лекарственных препаратов с перенастраиваемой технологией", журнал «Химическая промышленность», 2003г., № 5, стр. 4-18;
    электронный вариант статьи: www.thesa.ru/chemprom/2003/05_03/ostrov.pdf
  12. http://www.chemweb.com/databases/rci/html/welcome.htm
  13. http://www.viniti.msk.su
  14. http://www.chemsources.com
  15. http://www.chemfinder.com
  16. http://www.mdli.com
  17. http://chemfinder.cambridgesoft.com
Подробнее

Системы управления химико-технологическими процессами

Реферат пополнение в коллекции 09.12.2008

Пирометры излучения, из них наиболее распространены:

  1. квазимонохроматический пирометр, действие которого основано на использовании зависимости температуры от спектральной энергетической яркости, описываемой для абсолютно черного тела с достаточным приближением уравнениями Планка и Вина;
  2. пирометры спектрального отношения, действие которых основано на зависимости от температуры тела отношений энергетических яркостей в двух пли нескольких спектральных интервалах;
  3. пирометры полного излучения, действие которых основано па использовании зависимости температуры от интегральной энергетической яркости излучения.
Подробнее

Углеводы

Информация пополнение в коллекции 09.12.2008

В растениях углеводы образуются из двуокиси углерода и воды в процессе сложной реакции фотосинтеза, осуществляемой за счет солнеч-ной энергии с участием зелёного пигмента растений - хлорофилла.

Подробнее

Углерод (С)

Информация пополнение в коллекции 09.12.2008

CO2 растворяется в воде с образованием угольной кислоты. В 1906 О. Дильс получил недоокись углерода C3O2. Все формы углерода устойчивы к щелочам и кислотам и медленно окисляются только очень сильными окислителями (хромовая смесь, смесь концентрированных HNO3 и KClO3 и др.). "Аморфный" углеод реагирует с фтором при комнатной температуре, графит и алмаз - при нагревании. Непосредственное соединение углерода с хлором происходит в электрической дуге; с бромом и иодом углерод не реагирует, поэтому многочисленные галогениды углерода синтезируют косвенным путём. Из оксигалогенидов общей формулы COX2 (где Х - галоген) наиболее известна хлорокись COCl2 (фосген). Водород с алмазом не взаимодействует; с графитом и "аморфным" углеродом реагирует при высоких температурах в присутствии катализаторов (никель Ni, платина Pt): при 600-1000єС образуется в основном метан CH4, при 1500-2000єС - ацетилен C2H2, в продуктах могут присутствовать также другие углеводороды, например этан C2H6, бензол C6H6. Взаимодействие серы с "аморфным" углеродом и графитом начинается при 700-800єС, с алмазом при 900-1000єС; во всех случаях образуется сероуглерод CS2. Другие соединения углерода, содержащие серу (тиоокись CS, тионедоокись C3S2, сероокись COS и тиофосген CSCl2), получают косвенным путём. При взаимодействии CS2 с сульфидами металлов образуются тиокарбонаты - соли слабой тиоугольной кислоты. Взаимодействие углерода с азотом с получением циана (CN)2 происходит при пропускании электрического разряда между угольными электродами в атмосфере азота. Среди азотсодержащих соединений углерода важное практическое значение имеют цианистый водород HCN и его многочисленные производные: цианиды, гало-генцианы, нитрилы и др. При температурах выше 1000єС углерод взаимодействует со многими металлами, давая карбиды. Все формы углерода при нагревании восстанавливают окислы металлов с образованием свободных металлов (Zn, Cd, Cu, Pb и др.) или карбидов (CaC2, Mo2C, WC, TaC и др.). Углерод реагирует при температурах выше 600-800°С с водяным паром и углекислым газом. Отличительной особенностью графита является способность при умеренном нагревании до 300-400єС взаимодействовать со щелочными металлами и галогенидами с образованием соединений включения типа C8Me, C24Me, C8X (где Х - галоген, Me - металл). Известны соединения включения графита с HNO3, H2SO4, FeCl3 и другие (например, бисульфат графита C24SO4H2). Все формы углерода нерастворимы в обычных неорганических и органических растворителях, но растворяются в некоторых расплавленных металлах (например, железо Fe, никель Ni, кобальт Co).

Подробнее
<< < 66 67 68 69 70