Физика

Физика

Проектирование ТЭЦ

Курсовой проект пополнение в коллекции 20.08.2012

Для подготовки подпиточной воды на ТЭЦ, как правило, используются встроенные пучки (ВП) конденсаторов турбин. Величина тепловой нагрузки встроенного пучка может быть разной (у некоторых турбин нет ВП). После встроенного пучка вода поступает в пароводяной подогреватель, где нагревается до 25÷40°С (температура ограничена условиями работы с ионообменными смолами), далее, при необходимости, уменьшается жесткость воды в цехе химводоочистки (ХВО), а затем вода дегазируется в вакуумном деаэраторе. После вакуумного деаэратора подпиточная вода направляется или сразу на всас сетевых насосов, или в баки-аккумуляторы. Греющей средой для вакуумного деаэратора обычно является вода после основных сетевых подогревателей. Принципиальная схема подготовки подпиточной и сетевой воды с вакуумным деаэратором приведена на рис. 4.

Подробнее

Расчет токов короткого замыкания в сети внешнего и внутреннего электроснабжения промышленных предприятий

Курсовой проект пополнение в коллекции 20.08.2012

=X16+X26+X16∙ X26/ X20=0,49+1,32+0,49∙1,32/0,47=5,66 о. е.;=X16+X20+X16∙ X20/ X26=0,49+0,47+0,49∙0,47/1,32=0,17 о. е.;=X26+X20+X26∙ X20/ X16=1,32+0,47+1,32∙0,47/0,49=3,06 о. е.;=X25+X28+X25∙ X28/ X17=1,32+1,06+1,32∙1,06/0,49=5,78 о. е.;=X25+X17+X25∙ X17/ X28=1,32+0,49+1,32∙0,49/1,06=2,42 о. е.;=X17+X28+X17∙ X28/ X25=0,49+1,06+0,49∙1,06/1,32=1,94 о. е.

Подробнее

Проектирование трехфазного асинхронного двигателя с фазным ротором серии 4А со степенью защиты IP44

Дипломная работа пополнение в коллекции 19.08.2012

Изобретение относится к электротехнике, в частности к электрическим машинам. Изобретение решается задача упрощения технологии изготовления и снижения радиальных размеров асинхронного двигателя с регулируемой частотой вращения и улучшенными пусковыми характеристиками. Устройство содержит асинхронный двигатель с конструктивными особенностями, трансформатор тока и блока управления. Магнитопровод статора имеет пазы, расположенные соответственно на его внутренней и внешней цилиндрических поверхностях с трехфазной тороидальной обмоткой, магнитный шунт, размещенный на внешней цилиндрической поверхности пакета статора, имеющий пазы на внутренней поверхности, выполненные напротив пазов статора с размещенной в ней тороидальной обмоткой подмагничивания. Ротор двигателя состоит из двух роторов, разделенных магнитным сплавом. Первый ротор, короткозамкнутый, имеет на внешней поверхности пазы, в которых уложена обмотка из меди. Второй ротор, внешний, выполнен в виде сплошного массива из ферромагнитного материала. Характерным признаком изобретения является выполнение второго ротора в виде массива без обмотки. Применив предлагаемое изобретение, можно упростить технологию изготовления асинхронного двигателя при сохранении регулировочных и пусковых свойств, т. к. он выполняется либо путем токарной обработки, либо литьем. Кроме того, отсутствие второй короткозамкнутой обмотки позволяет уменьшить радиальные размеры двигателя.

Подробнее

Построение фазовой картины механической системы с хаотическим поведением

Курсовой проект пополнение в коллекции 17.08.2012

{v [10000]; //массив скоростей шарикаy [10000]; //массив координат шарикаcoord=0; //координата платформыvel=0; //скорость платформыa; //ускорение шарикаg; //ускорение свободного паденияT; //максимальное времяt=0; //текущее времяdt=0; //промежутки времениh; //высота, с которой падает шарикerr; //погрешностьerr2;N; //hmax; //a1; //ускорение платформыA; //амплитуда колебаний платформыw; //циклическая частота платформыq; //начальная фазаk; //коэффициент восстановления

Подробнее

Описание систем газо- и топливоснабжения

Информация пополнение в коллекции 15.08.2012

Регуляторы прямого действия снижают давление со среднего или высокого на низкое (90-350 мм вод. ст.). Используются у потребителей с расходом газа до 750 м3/ч. Вентильный корпус регулятора присоединяется к вертикальному газопроводу накидными гайками. Мембранная коробка регулятора должна занимать горизонтальное положение. Запасной ниппель на корпусе, закрывающийся пробкой, позволяет монтировать регулятор и на угловом участке газопровода. Импульс конечного давления газа по трубке поступает в подмембранное пространство регулятора и стремится переместить эластичную мембрану вверх, но этому противодействует давление регулируемой пружины, чем обеспечивается равновесное положение мембраны. При увеличении расхода газа его давление за регулятором понижается, следовательно, понижается оно и в подмембранной полости. Существовавшее до этого равновесие нарушается, мембрана под действием пружины перемещается вниз и через рычажный механизм отодвигает поршень от клапана, расход газа увеличивается и конечное давление восстанавливается. При уменьшении расхода газа конечное давление за регулятором повышается и процесс регулирования протекает в обратном порядке. Настройка регулятора на требуемое выходное давление газа осуществляется сжатием пружины с помощью гайки и регулировочного винта.

Подробнее

Проект реконструкции котельной Новомосковского металлургического трубного завода

Дипломная работа пополнение в коллекции 15.08.2012

Физическая величинаОбозначениеНомер формулыЗначение величины для максимально-зимнего режимаУтечки воды из теплосети, т/чGут2.112Количество подпит.воды, т/чGподп2.212Количество теплоты, внесенное подпиточной водой, МВтQподп2.31Тепловая нагрузка водоподогреват. установкиQв. п. у2.460Расход пара на деаэратор подпиточной воды, т/чDд. с. в2.50,5Расход воды на деаэратор подпиточной воды, т/чGд.с.вх.о.в2.611,5Температура химически очищенной воды после охладителя подпит.воды, ˚Ct охл2.7Расход пара, поступающей в деаэратор подпит.воды, т/чGпод х.о. в2.80,4Нагрузка подогревателей сетевой воды, МВтQп. с. в0Расход пара на подогреватели сетевой воды, т/чDп. с. в2.90Расход сырой воды на подпитку теплосетиDс. вт.с2.1014.4Расход пара на подогреватель сырой воды для подпитки теплосети, т/чDс. впод2.110,7Расход редуцированного параDРОУ2.126,83Суммарный расход свежего пара внешними потребителями, т/чDвн2.139Расход пара на собственные нужды котельной по предварительной оценке, т/чDс. н2.141,4Паропроизводительность котельной по предварительной оценке, т/чD2.1510,7Количество котловой воды, поступающей воды, поступающей в расширитель с непрерывной продувкой, т/чGпр2.160,3Количество пара, образовавшегося в расширителе, т/чDрасш2.170,05Количество воды на выходе из расширителя, т/чGрасш2.180,25Потери конденсата внешними производственными потребителями, т/чGкпот2.193Потери конденсата в цикле котельной установки, т/чGккот2.200,3Расход химически очищенной воды, поступающей в деаэратор питательной воды, т/чGх.о.в2.213,8Расход сырой воды, поступающей на химводоочистку паровых котлов, т/чGс. в2.224,8Температура с.в после охладителя продувки, ˚Ctс.в2.233Расход пара на подогреватель сырой воды, поступающей на химводоочистку паровых котлов, т/чDс. впод2.240,2Расход пара на подогреватель химически очищенной, установленный перед деаэратором питательной воды, т/чDх. о. в2.250,4Количество конденсата, возвращаемого внешними производственными потребителями, т/чGквн2.264,5Суммарное количество воды и пара на деаэратор воды, за вычетом пара, поступающего в деаэратор, т/чGдпв2.279Средняя температура воды в деаэраторе, ˚Ctд2.287,2Расход пара на деаэратор питательной воды, т/чDдп.в2.292Расход редуцированного пара на собственные нужды, т/чDс.нРОУ2.302,6Расход свежего пара на мазутное хозяйство, т/чDм2.312,65Расход свежего пара на собственные нужды, т/чDс.н2.325,2Действительная паропроизводительность котельной, т/чDк2.3311Невязка, %D2.34-2,8Количество воды, впрыскиваемое в РОУ, т/ч2.360,16

Подробнее

Проточные промышленные водонагреватели

Информация пополнение в коллекции 15.08.2012

Существует технология поэтапной очистки теплообменных аппаратов, которая дает возможность управлять процессами очистки и контролировать их по количеству отмываемых отложений, определяемых анализом воды, циркулирующей в замкнутом контуре. В процессе производственных исследований установлено, в частности, что жесткость воды, циркулирующей в замкнутом контуре, быстро возрастает в самом начале цикла, затем рост ее замедляется и, наконец, полностью прекращается - величина жесткости циркуляционной воды, равно как и щелочности, устанавливается на определенном уровне, зависящем от исходного загрязнения теплообменников карбонатными отложениями. По достижении указанного стабильного состояния цикл заканчивается, система промывается водопроводной водой и начинается новый цикл. Количество удаляемых отложений постепенно снижается, наконец, наступает такой момент, когда количество удаленных за цикл отложений не превышает 0,1-0,2 мг-экв/л, что свидетельствует о том, что очистка данной группы теплообменников заканчивается.

Подробнее

Характеристики и свойства твердого топлива

Информация пополнение в коллекции 15.08.2012

Гранулометрический (фракционный) состав топлива - это характеристика крупности его кусков. От него зависит выбор технических параметров ряда устройств (решеток на приемных бункерах разгрузочных устройств, грохотов, дробилок, конвейерных лент и др.). Крупность частиц топлива определяют рассевкой пробы на стандартных ситах (грохотах) с размером ячеек 150, 100, 50, 25, 13, 6, 3 и 0,5 мм. Обычно сита собирают в комплект, располагая их друг под другом с убывающими сверху вниз ячейками. Дно выполняют глухим. На верхнее сито помещают пробу топлива и весь комплект встряхивают с помощью специальной рассевочной машины. После этого определяют остаток на каждом сите и на дне и выражают его в процентах первоначальной массы пробы. Получаемые на всех ситах остатки, кроме верхнего, называют фракционными и обозначают буквой F с индексом, указывающим размер ячеек данного xi-1 и предыдущего xi сита - Fxi-1/ xi Таким образом, фракция - это массовая доля топлива в некотором интервале размеров частиц.

Подробнее

Ремонт тягодутьевых устройств

Информация пополнение в коллекции 15.08.2012

Подробнее

Свойства веществ при низких температурах. Жидкий гелий

Курсовой проект пополнение в коллекции 15.08.2012

Сверхнизкие температуры порядка 0,001 К можно получить, используя метод адиабатного размагничивания. Этот метод основан на зависимости энтропии парамагнитной соли от напряженности магнитного поля, в которое помещен образец. TS-диаграмма такой соли при отсутствии магнитного поля и при его наложении показана на рисунке 1. При наложении магнитного поля парамагнитные ионы таких солей, как, например, хромокалиевые или железоаммониевые квасцы, ориентируются полем подобно тому, как ориентируются магнитные компасные стрелки в поле Земли. Так как энтропия есть мера неупорядоченности, то всякое упорядочение приводит к уменьшению энтропии. Поэтому энтропия при наличии достаточно большого магнитного поля, достигающего 10-15000 а/см, будет значительно меньше, чем в отсутствии поля, как это видно на рисунке 1. Если при некоторой достаточно низкой температуре, полученной в гелиевом испарителе, на образец наложить магнитное поле, то энтропия вследствие упорядочения спинов магнитных моментов электронов уменьшится, и этот процесс изобразится линией аб. При хорошем тепловом контакте соли и гелия процесс будет изотермическим. Так как , то намагничивание происходит с выделением теплоты солью, которая передается гелию. Если теперь устранить тепловой контакт соли и гелия, создав тем самым условие адиабатности, и выключить магнитное поле, то процесс пойдет по линии бв. Действительно, при адиабатном процессе энтропия не меняется. точке в, характеризующей конечное состояние процесса, соответствует очень низкая температура, порядка сотых и тысячных долей градуса по абсолютной шкале. Если при наложении магнитного поля парамагнитные ионы получили параллельную ориентацию, т.е. произошло упорядочение, что вызвало понижение энтропии, то при снятии магнитного поля ионы опять ориентируются беспорядочно, что дает увеличение энтропии ионов. Но поскольку общая энтропия соли при адиабатном процессе не меняется, то должна уменьшится энтропия, связанная с тепловыми колебаниями кристаллической решетки соли, что приводит к понижению температуры. Вследствие неполной адиабатности процесса бв конечное состояние соли будет характеризоваться не точкой в, а точкой г, лежащей несколько выше на кривой энтропии нулевого поля.

Подробнее

Расчет прямоточного парогенератора

Курсовой проект пополнение в коллекции 15.08.2012

№ п/пНаименование величиныОбознач.РазмерностьФормула или источникЧисловое Значение1Среднее давлениеРSМПа(рs+ps)/23.2372Средняя температура0С[1], [3]2383Для расчета коэффициента теплоотдачи от стенки к кипящей воде необходимо предварительно оценить величину удельного теплового потока на испарительном участке и в дальнейшем вести расчет методом последовательных приближений по пп. 4-164Температура стенкиtстис0С2505Коэффициент теплопроводностиλстисВт/(м0С)18.36Термическое сопротивление стенки(м2 0С)/Вт1.1*10-47Термическое сопротивление окисных пленокRok(м2 0С)/ВтСм. примечание к п. 5.3.0.8*10-48Удельный тепловой потокВт/м218235989Коэффициент теплоотдачи от стенки к кипящей водеВт/(м2 0С)13597110Коэффициент теплопередачиВт/(м2 0С)3712.511Больший температурный напорΔtбис0С87.512Меньший температурный напорΔtмис0С85.413Средний температурный напорΔtсрис0С86.414Удельный тепловой потокВт/м2182359815Отношение-116Если выполняется условие 0,95£/ £1,05, то расчет заканчивается. В противном случае расчет повторяется, начиная с п.4 при 17Площадь поверхности нагреваНисм2Qис 103/qис45.5

Подробнее

Анализ переходных процессов в линейной электрической цепи

Курсовой проект пополнение в коллекции 14.08.2012

2)Составляем операторную схему. При составлении операторной схемы, все элементы исходной схемы заменяются операторными эквивалентами. Начальные независимые значения при переходе к операторной схеме представляют собой внутренние ЭДС.

Подробнее

Решение задачи разгона и торможения судна в процессе его эксплуатации

Курсовой проект пополнение в коллекции 14.08.2012

Значительные резервы в повышении скоростей судов появились при использовании новых принципов движения, в частности основанных на применении гидродинамических сил поддержания. Наиболее полно и эффективно используются гидродинамические силы в случае применения подводных крыльев в качестве несущей системы судна. С их помощью корпус судна поднимается над поверхностью воды, способствуя тем самым существенному уменьшению сопротивления воды движению судна. В данной курсовой работе решается задача для СПК, так как это наиболее распространенный тип судна с динамическими принципами поддержания.

Подробнее

Теплоснабжение микрорайона города

Курсовой проект пополнение в коллекции 13.08.2012

Подробнее

Проблема снижения выбросов соединений серы с дымовыми газами ТЭС и методы ее решения

Информация пополнение в коллекции 13.08.2012

Сухая известняковая технология (рис.1) основана на обжиге в топочной камере котла при 1000-1100°С тонко размолотого известняка, который превращается в этих условиях в активную известь. Интенсивность улавливания диоксида серы известью в диапазоне температур 500 - 850°С зависит от тонины помола реагента, поскольку процесс сорбции определяется преимущественно поверхностью контакта реагента с газом, которая, в свою очередь, зависит от размера частиц. Естественно, что обжиг известняка сопровождается использованием части тепла дымовых газов, что снижает КПД котла. Например, при сжигании бурых углей с теплотой сгорания равной 8,5 - 9,0 МДж/кг, продукты сгорания которых содержат 4 г/м3 SO2, ввод в дымовые газы известняка в относительном количестве CaC03/S02 = 2 снижает КПД котла на 1,1%. Оправданная (без заметного влияния на экономичность котельного агрегата) степень сероочистки дымовых газов с помощью такой технологии составляет 30-35%. Капитальные вложения для ее реализации, в частности, на энергоблоке мощностью 200 МВт Харанорской ГРЭС не превышают 5 дол/кВт, а доля потребляемой электроэнергии равна 0,1 - 0,2% [7]. Для размещения оборудования в ячейке котла практически не требуются дополнительные площади. Существующие отечественные технологии позволяют отказаться от пневматических систем транспортирования реагента, что резко снижает износ трубопроводов и в 3 - 4 раза уменьшает потребление электроэнергии на транспортирование.

Подробнее

Расчет парогенератора БКЗ-75-39-ФБ

Курсовой проект пополнение в коллекции 13.08.2012

Ф.(3-13),стр.18/1/.-0,991413Паропроизводит. агрегатаДПо заданиюкг/с19,714Давление пара у гл. паров.задвижРnnПо заданиюМПа-415Давление пара в барабанеРПо заданиюМПа-4,416Темпер. перегретого параtnnПо заданию0С-44517Темпер.питательн. водыtnвПо заданию0С-14518Уд. энтальпия перегрет. параіnnПо табл. VI - 8кДж/кг-3345,519Уд.энтальпия питател. водыinвПо табл. VI - 6кДж/кг-61320Значение продувкиρПо заданию%-521Полезно использ теплота в агрегате QnгД( іnn- inв)+ Д· ρ /100( iкиn-inв) кВт19,7(3345,5-613)+19,7·0,05(1065,7-613)54097,7922Полный расход топливаВ(Qnг·100)/ Qрр·кг/с2,2123Расчетный расход топливаВрВ·(1- q4/100)кг/с2,21·100-1/1002,1824Давл. питател. воды в экономайзере РnвПо заданиюМПа-425Энтальпия продувоч. водыiкиnПо табл.кДж/кг-1065,726Доля золы топлива в шлакеαшл1-αун-1-0,950,0527Температура шлаковtшлПо рекомендации/1/,стр17ºС-60028Уд. энтальпия шлаков(сv)шлПо таб. 2-4-56129Потери с физ. Теплот.шлаковq6%0,0154

Подробнее

Геотермальные электростанции

Информация пополнение в коллекции 13.08.2012

На данный момент, все большее распространение получают ГеоТЭС со смешанным циклом работы. Появившаяся несколько лет назад новая, разработанная австралийской компанией Geodynamics Ltd., революционная технология строительства ГеоТЭС - технология Hot-Dry-Rock, существенно повышает эффективность преобразования энергии геотермальных вод в электроэнергию. Суть этой технологии заключается в следующем. До самого последнего времени в термоэнергетике незыблемым считался главный принцип работы всех геотермальных станций, заключающийся в использовании естественного выхода пара. Австралийцы отступили от этого принципа и решили сами создать подходящий "гейзер". Для этого они отыскали в пустыне на юго-востоке Австралии точку, где тектоника и изолированность скальных пород создают аномалию, которая круглогодично поддерживает в округе очень высокую температуру. Поэтому если на такую глубину через скважину закачать воду, то она, повсеместно проникая в трещины горячего гранита, будет их расширять, одновременно нагреваясь, а затем по другой пробуренной скважине будет подниматься на поверхность. После этого нагретую воду можно будет без особого труда собирать в теплообменнике, а полученную от нее энергию использовать для испарения другой жидкости с более низкой температурой кипения, пар которой и приведет в действие паровые турбины. Вода, отдавшая геотермальное тепло, вновь будет направлена через скважину на глубину, и цикл, таким образом, повторится. (Смотри рисунок 3)

Подробнее

Тепловой расчёт ЦВД паровой турбины

Курсовой проект пополнение в коллекции 13.08.2012

по h-s диаграмме11Изоэнтропийный теплоперепад ступени по параметрам торможения,,по h-s диаграмме12Отношение скоростей 13Степень реактивности ,принимаем14Изоэнтропийный теплоперепад в сопловой решётке ,15Изоэнтропийный теплоперепад в рабочей решётке ,16Давление за сопловой решёткой по h-s диаграмме17Удельный объём пара за сопловой решёткой (теоретический) по h-s диаграмме18Удельный объём пара за рабочей решёткой (теоретический) по h-s диаграмме19Теоретическая скорость выхода из сопловых лопаток ,20Выходная площадь сопловой решётки (предварительная) при 21Угол направления скорости принимаем22Высота сопловых лопаток предварительная 23Хорда профиля сопловой решетки принимаем24Коэффициент расхода сопловой решётки определяем по 25Выходная площадь сопловой решётки 26Высота сопловых лопаток 27Коэффициент скорости сопловой решётки определяем по 28Скорость выхода пара из сопловой решётки 29Относительная скорость пара на входе в рабочую решётку 30Угол направления, , относительной скорости ,

Подробнее

Газотурбинные двигатели для электростанций

Информация пополнение в коллекции 13.08.2012

Подробнее

Защита электродвигателей от аварийных и ненормальных режимов

Отчет по практике пополнение в коллекции 12.08.2012

ДневникДатаРабочее местоВид работыТехнология выполнения работыПодпись руков.Примечание26.06.12-27Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Разборка и сборка 3-х фазных асинхронных двигателей. 28.06.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена автоматических выключателей. 29.06.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Прокладка кабеля. 30.06.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Прокладка кабеля. 01.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Сборка зернодробилки, монтаж водонагревателя. 04.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена, демонтаж и ТО системы вентиляции «Климат-47» 05.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Замена, демонтаж и ТО системы вентиляции «Климат-47» 06.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж системы освещений. 07.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Монтаж, ТО системы вентиляции «Климат-47» 08.07.12-09.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Плановая работа. Очистка и уборка от зеленых насаждений вокруг охраняемой зоны ЛЭП. 10.07.12Благоварский р-н, ГУП « ППЗ Благоварский» Монтажная работа. Установка дизельной электростанции.

Подробнее
<< < 3 4 5 6 7 8 9 10 11 > >>