Физика

Физика

Расчет параметров системы тягового электроснабжения

Курсовой проект пополнение в коллекции 26.08.2012

Расчет параметров тягового электроснабжения позволяет в процессе проектирования повысить провозную способности железной дороги, массы и скорости движения поездов, снизить расходы на ремонт и обслуживание локомотивов. Так же улучшить экологии прилегающих районов, повысить комфорт при обслуживании пассажиров, возможность возврата электроэнергии при движении поездов на спусках и при торможении.

Подробнее

Понизительная подстанция

Курсовой проект пополнение в коллекции 26.08.2012

Подробнее

Электронный энергетический спектр неодима

Дипломная работа пополнение в коллекции 26.08.2012

где - внешний потенциал, - функционал, выражающий внутренние свойства системы, замкнутое выражение которого в общем случае неизвестно. Функционал включает следующие компоненты энергии: кинетическую, обменно-корреляционную и энергию межэлектронного отталкивания. Часто для обменно-корреляционной энергии используется приближение локальной плотности (2.81), которое сводится по существу к отождествлению неоднородной электронной плотности в каждой точке системы плотностью однородной системы (2.80). Такая механическая замена плотности неоднородной системы постоянной плотностью оказалась весьма успешной при расчете зонной структуры полной энергии, упругих свойств веществ в основном состоянии. Оказалось, что область применимости функционала локальной плотности достаточно широка, включая неоднородные многоэлектронные системы. При этом существуют лишь качественные обоснования в пользу приближения локальной плотности. Они в общем случае сводятся к тому, что радиус обменно-корреляционной дырки не является чувствительным к деталям распределения электронной плотности. Выявлены области -диаграммы, благоприятные применимости локального приближения, а также выяснены механизмы появления нелокальности, в частности, совпадение величин радиуса экранировки Дебая и масштаба неоднородности. По всей видимости, приближение локальной плотности следует все-таки рассматривать как исключение, а не как общий прием в расчетах зонной структуры. В связи с этим в каждом конкретном случае приближение локальной плотности требует подтверждения своей эффективности. Вместе с тем в рамках данного приближения успешно были проведены расчеты электронной структуры простых и переходных металлов, а также полупроводников. Следует отметить, что в ряде полупроводников рассчитанная ширина запрещенной зоны получается заниженной по сравнению с экспериментально измеренной. Это объясняется тем, что собственные значения энергии одноэлектронного уравнения в приближении функционала локальной плотности не совсем адекватно отражают картину реального одночастичного спектра возбуждений [5].

Подробнее

Нелинейные колебания и синхронизация колебаний

Курсовой проект пополнение в коллекции 26.08.2012

За последние годы получили развитие компьютерные методы анализа, и во многих случаях полагалось, что полученные решения могут дать лучшее понимание проявлений нелинейности. Вообще говоря, обнаружилось, что простой перебор численных решений ведет лишь к чуть большему пониманию нелинейных процессов, чем, например, наблюдение за самой природой, «перемалывающей» решения такой конкретной нелинейной задачи, как погода. Похоже, что наше понимание основывается не на уравнениях или их решениях, а, скорее, на фундаментальных и хорошо усвоенных представлениях. Обычно мы понимаем окружающее, только когда можем описать его посредством понятий, которые настолько просты, что они могут быть хорошо усвоены, и настолько широки, чтобы можно было оперировать ими, не обращаясь к конкретной ситуации. Перечень таких понятий обширен и включает, например, такие термины как резонанс, гистерезис, волны, обратная связь, граничные слои, турбулентность, ударные волны, деформация, погодные фронты, иммунитет, инфляция, депрессия и т. д. Большинство наиболее полезных процессов нелинейны по своему характеру, и наша неспособность описать точным математическим языком такие повседневные явления, как поток воды в водосточном желобе или закручивание дыма от сигареты, частично кроется в том, что мы не желали ранее погрузиться в нелинейную математику и понять ее.

Подробнее

Реконструкция электрического оборудования ремонтно–механического цеха

Дипломная работа пополнение в коллекции 25.08.2012

Наименование узлов питания и групп электроприемниковКоличество эл. приемниковРном. (кВт)∑Рном кВт.mКиспсosφ/tgφ30,60,85/0,6231,519,535,61,41%d0%9c%d0%be%d0%bb%d0%be%d1%82%20-%20%d0%ba%d0%be%d0%b2%d0%be%d1%87%d0%bd%d1%8b%d0%b9111110,140,85/0,621,540,95%d0%92%d0%be%d0%b7%d0%b4%d1%83%d1%85%d0%be%d0%b4%d1%83%d0%b2%d0%ba%d0%b015,55,50,80,85/0,624,42,72%d0%a0%d1%83%d1%87%d0%bd%d0%be%d0%b9%20%d1%8d%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%be%d0%b8%d0%bd%d1%81%d1%82%d1%80%d1%83%d0%bc%d0%b5%d0%bd%d1%8217,57,50,20,85/0,621,50,93%d0%9a%d1%80%d0%b0%d0%bd%20-%20%d0%b1%d0%b0%d0%bb%d0%ba%d0%b017,57,50,20,85/0,621,50,93%d0%98%d1%82%d0%be%d0%b3%d0%be%20%d0%bf%d0%be%20%d0%a0%d0%9f%20-%201984>30,4840,42591,4156,935,266,9119,5%d0%a0%d0%9f%20-%202%d0%9a%d0%be%d0%bc%d0%bf%d1%80%d0%b5%d1%81%d1%81%d0%be%d1%80%20%d0%92%d0%9f%20-%2010175750,60,85/0,624527,9%d0%92%d0%b5%d0%bd%d1%82%d0%b8%d0%bb%d1%8f%d1%82%d0%be%d1%80%d0%bd%d0%be%20-%20%d0%ba%d0%b0%d0%bb%d0%be%d1%80%d0%b8%d1%84%d0%b5%d1%80%d0%bd%d0%b0%d1%8f%20%d1%83%d1%81%d1%82%d0%b0%d0%bd%d0%be%d0%b2%d0%ba%d0%b0145450,70,85/0,6231,519,5%d0%98%d1%82%d0%be%d0%b3%d0%be%20%d0%bf%d0%be%20%d0%a0%d0%9f%20-%2022120>30,6576,547,43,21,43109,367,7128,5229,7%d0%a0%d0%9f-3,%20%d0%a0%d0%9f-3%d0%90,%20%d0%a0%d0%9f-4,%20%d0%a0%d0%9f-4%d0%90,%d0%9c%d0%b5%d1%82%d0%b0%d0%bb%d0%be-%d0%be%d0%b1%d1%80%d0%b0%d0%b1%d0%b0%d1%82%d1%8b%d0%b2%d0%b0%d1%8e%d1%89%d0%b8%d0%b5%20%d1%81%d1%82%d0%b0%d0%bd%d0%ba%d0%b8%20%d0%b8%20%d0%ba%d1%80%d0%b0%d0%bd%20%d0%b1%d0%b0%d0%bb%d0%ba%d0%b0135,5%20-%2030150,5>30,140,85/0,622113102,144,127,351.892,5%d0%a0%d0%9f%20-%205%d0%a1%d0%b2%d0%b0%d1%80%d0%be%d1%87%d0%bd%d0%be%d0%b5%20%d0%be%d0%b1%d0%be%d1%80%d1%83%d0%b4%d0%be%d0%b2%d0%b0%d0%bd%d0%b8%d0%b5327%20-%20551190,40,45/1,9847,694,241,8789176,1197,3666%d0%ad%d0%bb%d0%b5%d0%ba%d1%82%d1%80%d0%be%d0%b4%d0%bd%d0%be-%d0%bf%d0%bb%d0%b0%d0%b2%d0%b8%d0%bb%d1%8c%d0%bd%d0%b0%d1%8f%20%d0%bf%d0%b5%d1%87%d1%8c155550,80,8/0,754433%d0%98%d0%bd%d0%b4%d1%83%d0%ba%d1%86%d0%b8%d0%be%d0%bd%d0%bd%d0%b0%d1%8f%20%d1%83%d1%81%d1%82%d0%b0%d0%bd%d0%be%d0%b2%d0%ba%d0%b0145450,60,5/1,7327,46,71273355167%d0%a4%d0%be%d1%80%d0%bc%d0%be%d0%b2%d0%be%d1%87%d0%bd%d0%b0%d1%8f%20%d0%bc%d0%b0%d1%88%d0%b8%d0%bd%d0%b0175750,750,8/0,7556,242,1%d0%9a%d1%80%d0%b0%d0%bd%20-%20%d0%b1%d0%b0%d0%bb%d0%ba%d0%b017,57,50,140,8/0,7510,78%d0%98%d1%82%d0%be%d0%b3%d0%be%20%d0%bf%d0%be%20%d0%a0%d0%9f%20-%2057301,5>30,490,60/1,41266,5375,781,4373,1525,986441636%d0%98%d1%82%d0%be%d0%b3%d0%be%20%d0%bf%d0%be%20%d0%a0%d0%9f%20-%201,%20%d0%a0%d0%9f%20-%202,%20%d0%a0%d0%9f%20-%203,%20%d0%a0%d0%9f%20-%203%d0%90,%20%d0%a0%d0%9f%20-%204,%20%d0%a0%d0%9f%20-%204%d0%90,%20%d0%a0%d0%9f%20-%204%d0%91,%20%d0%a0%d0%9f%20%20">Рсм. кварQсм. (кВар)nэ.Кmax.Pmax. (кВт)Qmax. кварSmax. кВАImax АРП - 1Группа отрезные станки54 - 18,552,5>30,60,85/0,6231,519,535,61,41Молот - ковочный111110,140,85/0,621,540,95Воздуходувка15,55,50,80,85/0,624,42,72Ручной электроинструмент17,57,50,20,85/0,621,50,93Кран - балка17,57,50,20,85/0,621,50,93Итого по РП - 1984>30,4840,42591,4156,935,266,9119,5РП - 2Компрессор ВП - 10175750,60,85/0,624527,9Вентиляторно - калориферная установка145450,70,85/0,6231,519,5Итого по РП - 22120>30,6576,547,43,21,43109,367,7128,5229,7РП-3, РП-3А, РП-4, РП-4А,Метало-обрабатывающие станки и кран балка135,5 - 30150,5>30,140,85/0,622113102,144,127,351.892,5РП - 5Сварочное оборудование327 - 551190,40,45/1,9847,694,241,8789176,1197,3666Электродно-плавильная печь155550,80,8/0,754433Индукционная установка145450,60,5/1,7327,46,71273355167Формовочная машина175750,750,8/0,7556,242,1Кран - балка17,57,50,140,8/0,7510,78Итого по РП - 57301,5>30,490,60/1,41266,5375,781,4373,1525,986441636Итого по РП - 1, РП - 2, РП - 3, РП - 3А, РП - 4, РП - 4А, РП - 4Б, РП ̶ 531656>30,44299727,6171,27382313493749

Подробнее

Гидравлический расчет трубопровода

Курсовой проект пополнение в коллекции 25.08.2012

№Число РейнольдсаКоэффициент λПредположениеd1d2d3d1d2d30-13.39531*1050.03738Квадратичная1-21.25016*1050.03738Квадратичная1-31.77421*1050.03738Квадратичная1-67.41862*1043.70931*1040.044450.0386d1-квадратичная d2-доквадратичная2-4(Q4)1.04635*1050.03738Квадратичная2-4(Q5)4.07622*1040.04445Квадратичная3-5(Q6)1.06069*1055.30347*1040.037380.03284d2-квадратичная d3-доквадратичная3-5(Q7)7.1352*1043.5676*1040.037380.03349d2-квадратичная d3-доквадратичная4-61.25016*1050.03738Квадратичная5-61.77421*1050.03738Квадратичная6-73.39531*1050.03738Квадратичная

Подробнее

Электроосвещение цеха промышленного предприятия

Курсовой проект пополнение в коллекции 24.08.2012

Первые в СССР обязательные нормы освещённости были разработаны в 1928 г. профессором П. М. Тиходеевым и утверждены Народным комиссариатом Труда. С того времени нормы многократно пересматривались в сторону повышения, причём одновременно расширялся круг регламентируемых ими вопровов. В настоящее время действуют нормы освещённости СНиП II-4-79. Эти нормы охватывают естественное и искусственное освещение промышленных предприятий, работ на открытом воздухе, общественных и жилых зданий, улиц, дорог и площадей населённых пунктов. Основные принципы построения норм освещённости с 1928 г. изменились лишь незначительно. За редким исключением нормы устанавливают наименьшую освещённость. Это следует понимать так, что во все время нормальной эксплуатации осветительной установки и во всех точках освещаемой поверхности освещённость не должна быть ниже установленных нормами значений. вместе с тем произвольное увеличение освещённости сверх этих значений не должно допускаться.

Подробнее

Разработка схемы освещения литейного цеха

Курсовой проект пополнение в коллекции 24.08.2012

Люминесцентные лампы создают в производственных и других помещениях искусственный свет, приближающийся к естественному, более экономичны в сравнении с другими лампами и создают освещение более благоприятное с гигиенической точки зрения. В зависимости от состава люминофора и особенностей конструкции различают несколько типов люминесцентных ламп: ЛБ - лампы белого света, ЛД - лампы дневного света, ЛТБ - лампы тепло-белого света, ЛХБ - лампы холодного света, ЛДЦ - лампы дневного света правильной цветопередачи. К преимуществам люминесцентных ламп относятся больший срок службы и высокая световая отдача, достигающая для ламп некоторых видов 75 лм/Вт, т.е. они в 2,5 - 3 раза экономичнее ламп накаливания. Свечение происходит со всей поверхности трубки, а, следовательно, яркость и слепящее действие люминесцентных ламп значительно ниже ламп накаливания. Низкая температура поверхности колбы (около 5°С), делает лампу относительно пожаробезопасной. Люминесцентное освещение имеет недостатки: пульсация светового потока, вызывающая стробоскопический эффект (искажение зрительного восприятия объектов различения); сложная схема включения, требующая регулирующих пусковых устройств (дроссели, стартеры); чувствительность к колебаниям температуры окружающей среды (оптимальная температура 20-25°С); понижение и повышение температуры вызывает уменьшение светового потока.

Подробнее

Расчет освещения ремонтно-механического цеха

Курсовой проект пополнение в коллекции 24.08.2012

Таблица 5 - Выбор сечения проводов и кабелей№PLISрSПотериMКабельЩО-110,4182,020,241,50,407,2ПУНП 3х1,520,32271,620,291,50,488,64ПУНП 5х1,530,32181,620,191,50,325,76ПУНП 5х1,540,32131,620,141,50,234,16ПУНП 5х1,550,4132,020,171,50,295,2ПУНП 3х1,560,4302,020,401,50,6712ПУНП 3х1,572,73013,642,7041,6981ПУНП 5х482,72513,642,2541,4167,5ПУНП 5х492,72013,641,802,51,8054ПУНП 5х2,5100,3251,520,251,50,427,5ПУНП 3х1,5110,484,52,420,071,50,122,16ПУНП 5х1,5120,974,090,211,50,356,3ПУНП 5х1,5ЩО-210,6232,730,461,50,7713,8ПУНП 5х1,520,2270,910,181,50,305,4ПУНП 3х1,530,8363,640,961,51,6028,8ПУНП 5х1,540,48452,180,721,51,2021,6ПУНП 5х1,550,48502,180,801,51,3324ПУНП 5х1,561,28305,821,282,51,2838,4ПУНП 5х2,571,28365,821,5440,9646,08ПУНП 5х1,580,2270,910,181,50,305,4ПУНП 3х1,590,95274,320,861,51,4325,65ПУНП 5х1,5101,04234,730,801,51,3323,92ПУНП 5х1,5112,08159,451,041,51,7331,2ПУНП 5х1,5ЩО-310,290,910,061,50,101,8ПУНП 3х1,521,12185,090,671,51,1220,16ПУНП 5х1,531,12135,090,491,50,8114,56ПУНП 5х1,541,1295,090,341,50,5610,08ПУНП 5х1,550,96274,360,861,51,4425,92ПУНП 5х1,560,2230,910,151,50,264,6ПУНП 3х1,570,96204,360,641,51,0719,2ПУНП 5х1,580,96154,360,481,50,8014,4ПУНП 5х1,590,96114,360,351,50,5910,56ПУНП 5х1,5100,2110,910,071,50,122,2ПУНП 3х1,5110,96114,360,351,50,5910,56ПУНП 5х1,5120,96114,360,351,50,5910,56ПУНП 5х1,5ЩО-410,240,910,031,50,040,8ПУНП 5х1,520,843,640,111,50,183,2ПУНП 5х1,530,843,640,111,50,183,2ПУНП 5х1,540,1640,730,021,50,040,64ПУНП 5х1,550,441,820,051,50,091,6ПУНП 3х1,560,441,820,051,50,091,6ПУНП 5х1,570,4131,820,171,50,295,2ПУНП 3х1,580,4301,820,401,50,6712ПУНП 3х1,592,723012,362,7241,7081,6ПУНП 5х4102,722512,362,2741,4268ПУНП 5х4112,721812,361,632,51,6348,96ПУНП 5х2,5120,3231,360,231,50,386,9ПУНП 5х1,5ЩО-А10,32451,450,481,50,8014,4ПУНП 5х1,520,48632,181,011,51,6830,24ПУНП 5х1,530,24401,090,321,50,539,6ПУНП 5х1,540,28451,270,421,50,7012,6ПУНП 5х1,550,48632,181,011,51,6830,24ПУНП 5х1,560,32541,450,581,50,9617,28ПУНП 5х1,570,6302,730,601,51,0018ПУНП 5х1,5

Подробнее

Энергосбережение при освещении помещений

Информация пополнение в коллекции 24.08.2012

Во многих странах мира это очень отчетливо осознается и в последнее время там принимаются исключительно эффективные меры по вытеснению ламп накаливания. Например, в ноябре 2008 г. вышло Постановление Правительства Украины о том, что, начиная с 2009 г., во всех правительственных зданиях лампы накаливания должны быть заменены на другие более энергоэффективные источники света. С начала 2009 г. в Великобритании из продажи исчезли лампы накаливания мощностью 75 Вт, 100 Вт и 150 Вт. Решено, что специальные уполномоченные будут инспектировать магазины и даже отдельные квартиры, проверяя, какие лампочки продаются и какими пользуется население. Уполномоченные наделены правом изъятия "нелегальных" ламп накаливания. По оценкам британских аналитиков, экономия от таких мер может составить до 8 млрд долл. США. Евросоюз принял решение полностью перейти на энергосберегающие к 2012 г. В США вышло постановление, подписанное президентом, о том, что с 2011 г. исключаются из производства и применения лампы накаливания мощностью 100 Вт, в 2012 г. - 75 Вт и так далее до 2014 г., когда лампы накаливания должны быть полностью ликвидированы. В Австралии издано постановление правительства о полном переходе на компактные люминесцентные лампы (КЛЛ) к 2012 г. Это понятно и очевидно, потому что если бы все страны мира перешли на использование КЛЛ, то можно было бы высвободить столько же электроэнергии, сколько за 4 года потребляет вся Австралия.

Подробнее

Расчет освещения цеха по ремонту дизельной топливной аппаратуры

Курсовой проект пополнение в коллекции 24.08.2012

Выбор коэффициента запаса и добавочной освещенности. Снижение светового потока осветительной установки из-за загрязнения светильников и источников света (даже при регулярной чистке) и их старения при расчетах учитывают коэффициентом запаса, представляющим собой отношение светового потока нового светильника с новой лампой к световому потоку того же светильника в конце срока службы лампы. Коэффициент запаса выбирают в зависимости от характеристики помещения и типа источника света по отраслевым нормам освещения, специальной справочной литературе. При расчете освещенности в любой точке учитывают световые потоки только ближайших светильников. Для учета действия удаленных светильников и отраженных потоков в расчетной формуле используют коэффициент добавочной освещенности. Его значение зависит от коэффициентов отражения стен и потолка помещения и от светораспределения светильников, т. е. от их типа. Значения коэффициента добавочной освещенности даны в справочной литературе.

Подробнее

Расчет освещения

Информация пополнение в коллекции 24.08.2012

 

  1. Щербакова Ю.Н. «Электрическое освещение» ЛВВИСКУ, Ленинград, 1987 - 232 с.
  2. Кнорринг Г.М. и др. «Справочная книга для проектирования электрического освещения». Энергия. Ленинград, 1976 - 384 с.
  3. «Правила устройств электроустановок» М. Энергоатомиздат, 1986 - 648 с; 1999 - 928 с.
  4. СниП 23-05-95 «Естественное и искусственное освещение», Госстрой, Россия, М., 2000, 35 с.
  5. ВСН 59-88 «Электрооборудование жилых и общественных зданий», Нормы проектирования, Госкомархитектуры, М.,2000, 87 с.
  6. Гуторов М.М. «Основы светотехники и источники света», М., Энергоатомиздат. 1983 - 384 с.
  7. Айзенберг Ю.Б. «Справочная книга по светотехнике», М., Энергоатомиздат. 1983 - 472 с.
  8. Приложения к методическим рекомендациям по оформлению курсовых и дипломных проектов. Камышин. 1984 - 102 с.
  9. Пикман И.Я. «Электрическое освещение взрывоопасных и пожароопасных помещений», М., ЭАИ, 1985, 104 с.
  10. «Правила устройства электроустановок», раздел 6, 7; 7-е издание, М., Министерство топлива и энергетики РФ, 1999, 79 с.
  11. Цагарели Д.В. и др. «Справочное пособие электрика предприятий и объектов нефтепродуктообеспечения», НК «Роснефть», М., 1997.
  12. ГОСТ 17677-82 (ст. СЭВ 3182-81) Светильники. Общие технические условия, М., Издательство стандартов.
  13. Райцельский Л.А. «Справочник по осветительным сетям», Изд. 3-е, М., Э, 1977.
  14. «Правила эксплуатации электроустановок потребителей», Изд. 5-е, Энергоатомиздат, М., 1992, 288 с.
  15. Барыбин Ю.Г. «Справочник по проектированию электрических сетей и электрооборудования», Энергоатомиздат, М., 1991, 464 с.
  16. СНиП 3.05.06-85 «Электротехнические устройства», Госстрой, М., 1986, 56 с.
  17. Кнорринг Г.М. «Осветительные установки», Энергоиздат, Л., 1981, 279 с.
  18. ГОСТ 21.614-88 (СТ СЭВ 3217-81) «Изображения условные графические электрооборудования и проводок на планах», М.
  19. ГОСТ 21.608-84 «Внутреннее электрическое освещение, рабочие чертежи», М.
  20. ГОСТ 21.613-88 «Силовое электрооборудование, рабочие чертежи», М.
Подробнее

Проектирование электрического освещения производственного помещения

Курсовой проект пополнение в коллекции 24.08.2012

ПомещениеS, м²Высота, мКоэф. отраж. светаВид освещ.Норм. освещ. Е лкСветильникЛампаУд. Мощность Вт/м²pnpстpрптипчислотипчислоАппаратный зал343,0505030Общее200АPS/R 4x36W3PHILIPS TL´D Standard 36W1212КРОСС603,0505030Общее300АPS/R 4x36W6PHILIPS TL´D Standard 36W2415Кабинет инженера153,0505030Общее200АPS/R 2x36W2PHILIPS TL´D Standard 36W412Служебная комната2,43,0505030Общее30АPS/R 1x18W1PHILIPS TL´D Standard 36W13

Подробнее

Определение конечных параметров при детонации газа

Контрольная работа пополнение в коллекции 23.08.2012

Изображена труба большой длины, заполненная газом. F - площадь поперечного сечения трубы (м2); dx - бесконечно малое расстояние между сечением трубы 1 и 2; V1 - удельный объем м3/кг; P1 - давление (Па); T1 - абсолютная температура (К); D- скорость детонации м/с; W - скорость диффузии м/с. Если в сечении 1 температуру повысить до воспламенения, то тепло путем теплопроводности будет передаваться ко 2 слою, а масса вещества путем диффузии будет перемещаться сюда же в обратном направлении из 3 секции. Если горение возникает во 2 слое, тепло передается к 3 слою и т.д., так происходит процесс нормального горения.

Подробнее

Двухканальное устройство управления освещением (диммер) для бытового светильника

Курсовой проект пополнение в коллекции 23.08.2012

; ****************Обработка второго канала********************************Processing:rBit1, bSoftTurnCh2CheckButton2rBit1, bIsChannel2OnSoftTurnOffCh2Temp, meOwnersAtHomeBrightreSystemBits, ebOwnersAtHomeCompareBrightnessCh2Temp, meLastBright2_1reSystemBits, ebChannel2ModeTemp, meLastBright2_2:Temp, rBrightnessCh2SoftTurnOnCh2Completed:rBit1, 1<<bSoftTurnCh2reSystemBits, 1<<ebPowerStateCh2rButton2HoldTime, 255Temp, meBrightnessMaxCh2rBrightnessCh2, TempPC+2rBit1, 1<<bBrightVectorCh2GoOutCh2:Temp, meTurnOnSpeedMode1Ch2reSystemBits, ebChannel2ModeTemp, meTurnOnSpeedMode2Ch2rSoftTurnSpeedCh2Temp, rSoftTurnSpeedCh2ExitSoftTurnOnCh2rSoftTurnSpeedCh2rBrightnessCh2:GoOutCh2:reSystemBits, 1<<ebPowerStateCh2rBit1, bTurnOffStartedCh2rSoftOffBrightCh2rBrightnessCh2, rSoftOffBrightCh2SoftTurnOffCh2CompletedTemp, meTurnOffSpeedMode1Ch2reSystemBits, ebChannel2ModeTemp, meTurnOffSpeedMode2Ch2rSoftTurnSpeedCh2Temp, rSoftTurnSpeedCh2ExitSoftTurnOffCh2rSoftTurnSpeedCh2rBrightnessCh2:GoOutCh2Completed:rBit1, 1<<bSoftTurnCh2rBit1, bTurnOffStartedCh2rBit1, 1<<bIsChannel2OnrButton2HoldTime, 255GoOutCh2:pKeyboardIn, sbChannel2Button2IsOffTemp, 255mSaveBrightDelayCh2, TempResetAutoOffTimerCh2rButton2HoldTime, cButtonOnHoldSenseButton2OnHoldrButton2HoldTime, 255PC+2rButton2HoldTimeIsChannel2OnOnHold:rBit1, bTurnOffStartedCh2RestoreBrightnessCh2rBit1, bIsChannel2OnChangeBrightnessCh2pKeyboardIn, sbChannel1TurnCh2InSecondModeTemp, rBit1Temp, (1<<bBrightVectorCh1) + (1<<bBrightVectorCh2)TurnCh2InSecondModereSystemBits, (1<<ebOwnersAtHome) + (1<<ebPowerStateCh1) + (1<<ebPowerStateCh2)OwnersAtHomeTimerTriggerGoOutInSecondMode:reSystemBits, 1<<ebChannel2ModereSystemBits, 1<<ebOwnersAtHomeTurnCh2On:ResetAutoOffTimerCh2rBit1, 1<<bTurnOffStartedCh2reSystemBits, 1<<ebPowerStateCh2rBit1, 1<<bSoftTurnCh2GoOutCh2:reSystemBits, ebOwnersAtHomeGoOutCh2reBrightChangeSpeedCh2, rBrightCounterCh2BrightReadyToChangeCh2rBrightCounterCh2IsChannel2On:rBrightCounterCh2rBit1, bBrightVectorCh2IncreaseBrightnessCh2:Temp, meBrightnessMinCh2Temp, rBrightnessCh2MinBrightnessReachedCh2rBrightnessCh2GoOutCh2:rBrightCounterCh2, reBrightChangeSpeedCh2Temp, mBrightMinCounterCh2TempBrightMinTimeoutIsUpCh2mBrightMinCounterCh2, TempGoOutCh2:Temp, meMinBrightDelayCh2mBrightMinCounterCh2, TemprBit1, 1<<bBrightVectorCh2rBrightCounterCh2GoOutCh2:Temp, meBrightnessMaxCh2rBrightnessCh2, TempMaxBrightnessReachedCh2rBrightnessCh2GoOutCh2:rBrightCounterCh2, reBrightChangeSpeedCh2Temp, mBrightMaxCounterCh2TempBrightMaxTimeoutIsUpCh2mBrightMaxCounterCh2, TempGoOutCh2:Temp, meMaxBrightDelayCh2mBrightMaxCounterCh2, TemprBit1, 1<<bBrightVectorCh2rBrightCounterCh2GoOutCh2IsOff:rButton2HoldTime, 255PC+2rButton2HoldTime, 0rButton2HoldTime, 0IsChannel2OnrButton2HoldTime, cButtonOnHoldSenserButton2HoldTime, 0HoldButton2:rBit1, bIsChannel2OnTurnCh2OffreSystemBits, (1<<ebChannel2Mode) + (1<<ebOwnersAtHome)TurnCh2On:Temp, meMinBrightDelayCh2mBrightMinCounterCh2, TempTemp, meMaxBrightDelayCh2mBrightMaxCounterCh2, TempreUserBits1, ebBrightDirModeCh2InvertBrightVectorCh2Temp, meBrightnessMinCh2rBrightnessCh2, TempInvertBrightVectorCh2Temp, meBrightnessMaxCh2rBrightnessCh2, TempInvertBrightVectorCh2IsChannel2On:Temp, rBit1rBit1, 1<<bBrightVectorCh2Temp, bBrightVectorCh2rBit1, 1<<bBrightVectorCh2IsChannel2OnOn:rBit1, (1<<bIsChannel2On) + (1<<bSoftTurnCh2) + (1<<bBrightVectorCh2)rBrightnessCh2GoOutOff:reSystemBits, ebOwnersAtHomeOwnersAtHomeNotSetCh2rBit1, (1<<bIsChannel1On) + (1<<bIsChannel2On)rBit1, (1<<bSoftTurnCh1) + (1<<bSoftTurnCh2)reSystemBits, (1<<ebOwnersAtHome) + (1<<ebPowerStateCh1) + (1<<ebPowerStateCh2)GoOutCh2:rBit1, (1<<bIsChannel2On) + (1<<bTurnOffStartedCh2)rBit1, 1<<bSoftTurnCh2GoOutCh2On:rBit1, bIsChannel2OnGoOutreSystemBits, ebOwnersAtHomeGoOutCh2Temp, mSaveBrightDelayCh2TempmSaveBrightDelayCh2, TempExitSaveBrightDelayCh2rBit1, bTurnOffStartedCh2ExitSaveBrightDelayCh2reSystemBits, ebChannel2ModeSaveBrightnessMode2Ch2reUserBits2, ebSaveBrightM1Ch2meLastBright2_1, rBrightnessCh2ExitSaveBrightDelayCh2Ch2:reUserBits2, ebSaveBrightM2Ch2meLastBright2_2, rBrightnessCh2:TurnOffTimeoutCh2:ZH, HIGH (2*BrightnessTable)ZL, LOW (2*BrightnessTable)ZL, rBrightnessCh2Temp, 0ZH, TemprCh2OffTime, Z

Подробнее

Релейная защита тяговой подстанции

Курсовой проект пополнение в коллекции 22.08.2012

Тип защитыИсполнениеРежим работыИсполнитель- ный элементСтупень1. Питающая линия 220кВДЗ3х фазное 3х ступенчатаяМногофазное КЗ в ЛЭПВыключатель 220 кВ перемычки, выключатели на стороне ВН и НН трансф-раIст=0 IIст= 0.3 III ст = 0.6ТО2х фазноерезерв I ст ДЗ при близких КЗВыключатель 220 кВ перемычки, выключатели на стороне ВН и НН трансф-рабез выдерж-ки времениМТЗ04х ступенчатаяОднофазное КЗВыключатель 220 кВ перемычки, выключатели на стороне ВН и НН трансф-раIст=0 IIст= 0.3 III ст = 0.6 IV ст = 0.9АПВ3х фазноеотключает выключатели от защитыоднократное включение-2. Шины 220 кВДЗ3х фазная 3 х релей-наявсе виды КЗ на шинахзащищает 2 секционные шиныI ст =03. Понижающие трансформаторы 220/35/27,5ДЗТ3х фазное продольная 3х релейное исполнениеКЗ в обмотках и на выводах трансформа-тораОтключение трансформато-ра со стороны всех его обмотокбез выдерж-ки времениГЗ(двухсту-пенчатая)отдельное реле на баке тр-ра, расширите-ле(реле уровня масла) и в устройстве регулирования напряжения под нагрузкой (РПН)При внутренних поврежде-ниях в баке тр-ра ( в том числе и витковых замыканиях) и в устройстве РПН При слабом газообразовании(при токовой перегрузке) и медленном снижении уровня масла в баке расширителяОтключение тр-ра со всех сторон Сигнал I ст =на сигнал II ст =0ЗРПНДатчик в устройстве РПНпри застревании механизма РПН в промежуточ-ном положенииотключение тр-ра со стороны всех его обмотокбез выдерж-ки времениМТЗ 220 кВ3х фазное 3х релейное с пуском по напряжениювнешние КЗ., резервирование ДЗТ, ГЗ, МТЗ на стороне СН и ННОтключение выключателей трансформа-тораI ст =1,2МТЗ 35 кВ2х фазное 2х релейное с пуском по напряже-ниюОт многофазных КЗвыключатель ввода 35 кВ, резерв защит, присоединен-ных к 35 кВIст = 0,9МТЗ 27.5 кВ2х фазное 2х релейное с пуском по напряже-ниюна все КЗ., резервирует защиты присоединений 27,5 кВ и согласуется с ними по временивыключатель ввода 27,5 кВ, резерв защит, присоединеных к 27.5 кВI ст =0,6ЗП(МТЗП)МТЗ с выдержкой времени и действием на сигнал однофазное однорелей-ноеперегрузка трансформа-тора током сверх номиналь-ногоСигнал отключение выключателей трансформа-тораI ст- обдув IIст -сигнал III ст- откл.=9АПВ3х фазноеотключение вводов от защит внешних КЗоднократное включение выключателя ввода-АВР3х фазноеотключение тр. от защит внутрен поврежденийоткл. секционного выключателя, восстановление питания-4. Сборные шины 35 кВТО2х фазное 2х релейноемногофазные КЗсекционный выключатель 35 кВI ст =0,6 АПВ2х фазное 2 релейное исполнениеоткл. секционного выключателя от защит внешних КЗоднократное включение выключателя-5. Фидера 35 кВМТЗ2х фазное 3х релейное с выдержкой времениМногофазное КЗ, до шин подстанции. Резервирует защиту фидерных потребителейОткл. выключателя фидера 35 кВI ст = 0.3ТО2х фазное 2х релейноеМногофазное КЗОткл. выключателя фидера 35 кВI ст=0АПВ3х фазноеоткл. выключателя от защитыоднократное включениебез выдерж-ки времени6. Ввод 27.5 кВЗМН3х фазное 3х релейноеКЗ на шинах 27,5 кВ и резерв на ФКС, ДПРотключение выключателей ввода 27,5I ст =0.6Токовая защита нулевой последовательностиоднофазные КЗ в ЛЭП 220 кВотключение выключателей ввода 27,5I ст =0,3Защита от подпитки Umin 220КЗ в ЛЭП 220 кВотключение выключателей ввода 27,5I ст =0.37. Шины 27,5 кВЗМН (Защита по min напряжению)2х фазноерезервирует отходящий фидер в случае отказа выключате-ля, предот-вращает подпитку КЗ на ЛЭП 220 со стороны ТПСрабатывание выключателей, подключенных к шинамI ст =0.6УРОВ2х фазноеОтказ выключателя фидера КСотключение всех выключателей присоединения 27.5 кВI ст =0.68. Фидер КСДЗ12х ступенчатая электронная защита дополнен-ная УТО и телеблоки-ровкой1-ая ст.-КЗ в зоне п/ст-пост секционирования(80-85%) 2-ая ступень до шин смежной подстанции(30-40%)откл. выкл ФКС ВВК-27.5Iст=0УТОэлектроннаяблизкое КЗ с большими токамиоткл. выкл ФКС ВВК-27.5Iст=0ДЗ2КЗ в зоне п/ст-смежная п/стоткл. выкл ФКС ВВК-27.5Iст=0.3ДЗ3КЗ в зоне п/ст-смежная п/стоткл. выкл ФКС ВВК-27.5Iст=0.69. Фидер ДПРТО2х фазное2х фазные, 3х фазные КЗ на 15-20% линииоткл. выкл. ВВК-35I ст =0МТЗ2хфазное 2х релейное2х фазные, 3х фазные КЗотключение выключателя фидера ДПРI ст =0.3 II ст=10. ТСНТО2хфазное 2х релейноеКЗ в обмотках трансформатора и на его выводахоткл. выкл. ВВК-35I ст =0МТЗ с выдержкой времени2х фазное 3х релейное исполнениевнешние (сквозные)КЗоткл. выкл. ВВК-35I ст =0.3 ЗП (МТЗ с выдержкой времени и действием на сигнал)1 фазное 1 релейноеперегрузка трансформа-тора током сверхноми-нальногооткл. выключателей трансформатораIст=сиг-нал IIст =9АПВ3х фазноеоткл. выключателя от МТЗоднократное включениебез выдерж-ки

Подробнее

Расчет релейной защиты понижающего двухобмоточного трансформатора 110/10 кВ с вопросами автоматики

Курсовой проект пополнение в коллекции 22.08.2012

Газовая защита основана на использовании явления газообразования в баке поврежденного трансформатора (Рис.4). Она устанавливается на трансформаторах и автотрансформаторах, а также на токоограничиваюших реакторах с масляным охлаждением, имеющих расширители. Применяемые газовые зашиты является обязательным на трансформаторах и автотрансформаторах мощностью 4,0 МВ*А и более, а также на трансформаторах и автотрансформаторах мощностью от 1000 до 4000 кВ*А, не имеющих дифференциальной защиты или отсечки и если максимальная токовая защита имеет выдержку времени 10 и более. В трансформаторах мощностью 1000 - 4000 кВ*А применение другой газовой защиты при наличии другой быстродействующей защиты, допускается, но не является обязательным. Применение данной газовой защиты является необходимым на внутрицеховых трансформаторах и автотрансформаторах мощностью от 6,3 МВ*А и выше независимо от других быстродействующих защит.

Подробнее

Релейная защита и автоматика питающей подстанции 35/10 кВ

Курсовой проект пополнение в коллекции 22.08.2012

Подробнее
<< < 1 2 3 4 5 6 7 8 9 > >>