Физика

Физика

Мария Склодовская-Кюри - дважды лауреат Нобелевской премии

Реферат пополнение в коллекции 18.02.2006

В 1894 году Мария познакомилась с Пьером Кюри, также посвятившим свою жизнь целиком науке. Поэт, а вместе с ним состоявшийся физик, был покорен Марией Склодовской. Пьер Кюри мягко, но настойчиво ищет сближения с польской девушкой. Два или три раза он виделся с ней на заседаниях Физического общества, где она слушала сообщения ученых о новых открытиях. В знак уважения он послал ей оттиск своей последней статьи «О симметрии в физических явлениях. Симметрия электрического и симметрия магнитного полей», а на первой странице написал: «Мадемуазель Склодовской в знак уважения и дружбы автора». Он заприметил ее в лаборатории у Липпманна, где она, одетая в парусиновых халат, стояла, молча склонившись над своей аппаратурой. Совместная работа в лаборатории, где Мария Склодовская осталась после окончания учебы для подготовки докторской диссертации и взаимная симпатия связала их. У Марии и Пьера оказались одинаковые взгляды по научным и общественным вопросам.

Подробнее

Типы электростанций

Информация пополнение в коллекции 18.02.2006

Использование приливной энергии ограничено главным образом высокой стоимостью сооружения ПЭС (стоимость сооружения ПЭС Ране почти в 2,5 раза больше, чем обычной речной ГЭС такой же мощности). В целях её снижения в СССР впервые в мировой практике строительства ГЭС при возведении ПЭС был предложен и успешно осуществлен т. н. наплавной способ, применяющийся в морском гидротехническом строительстве (тоннели, доки, дамбы и т.п. сооружения). Сущность способа состоит в том, что строительство и монтаж объекта производятся в благоприятных условиях приморского промышленного центра, а затем в собранном виде объект буксируется по воде к месту его установки. Таким способом в 1963-68 на побережье Баренцева моря в губе Кислой (Шалимской) была сооружена первая в СССР опытно-промышленная ПЭС. Здание ПЭС (36´18´15 м) из тонкостенных элементов (толщиной 15-20 см), обеспечивающих высокую прочность при небольшой массе сооружения, было возведено в котловане на берегу Кольского залива, близ г. Мурманска. После монтажа оборудования и испытания корпуса здания на водонепроницаемость котлован был затоплен, здание на плаву вывели в море и отбуксировали в узкое горло губы Кислой. Здесь во время отлива оно было установлено на подводное основание и соединено сопрягающими дамбами с берегами; тем самым было перекрыто горло губы и создан бассейн ПЭС. В здании ПЭС предусмотрено размещение 2 обратимых гидроагрегатов мощностью 400 квт каждый. 28 декабря 1968 ПЭС дала промышленный ток. Создание ПЭС Ране и Кислогубской ПЭС и их опытная эксплуатация позволили приступить к составлению проектов Мезенской ПЭС (6-14 Гвт) в Белом море, Пенжинской (35 Гвт) и Тугурской (10 Гвт) в Охотском море, а также ПЭС в заливах Фанди и Унгава (Канада) и в устье р. Северн (Великобритания).

Подробнее

Применение полупроводников в технике

Информация пополнение в коллекции 18.02.2006

Примеси, обусловливающие возникновение электронной проводимости в кристаллах, называются донорами. В кремнии и германии ими являются элементы V группы таблицы Менделеева сурьма, фосфор, мышьяк и висмут. Трёхвалентный атом примеси бора в решётке кремния ведёт себя по-иному. На внешней оболочке атома бора имеются только три валентных электрона. Значит, не хватает одного электрона, чтобы заполнить четыре валентные связи с четырьмя ближайшими соседями. Свободная связь может быть заполнена электроном, перешедшим из какой-либо другой связи, эта связь заполнится электронами следующей связи и т.д. Положительная дырка (незаполненная связь) может перемещаться по кристаллу от одного атома к другому (при движении электрона в противоположном направлении). Когда электрон заполнит недостающую валентную связь, примесный атом бора станет отрицательно заряженным ионом, заменяющим атом кремния в кристаллической решётке. Дырка будет слабо связана с атомом бора силами электростатического притяжения и будет двигаться около него по орбите, подобной орбите электрона в атоме водорода. Энергия ионизации, т.е. энергия, необходимая для отрыва дырки от отрицательного иона бора, будет примерно равна 0,05 эв. Поэтому при комнатной температуре все трёхвалентные примесные атомы ионизированы, а дырки принимают участие в процессе электропроводности. Если в кристалле кремния имеется примесь трёхвалентных атомов (III группа периодической системы), то проводимость осуществляется в основном дырками. Такая проводимость носит название дырочной или проводимости р (р - первая буква слова positive). Примеси, вызывающие дырочную проводимость, называются акцепторами. К акцепторам в германии и кремнии относятся элементы третьей группы периодической системы: галлий, таллий, бор, алюминий.

Подробнее

Магнит и магнитные поля

Информация пополнение в коллекции 18.02.2006

Мы привыкли к магниту и относимся к нему чуточку снисходительно как к устаревшему атрибуту школьных уроков физики, порой даже не подозревая, сколько магнитов вокруг нас. В наших квартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах, в банках с гвоздями, наконец. Сами мы тоже магниты: биотоки, текущие в нас, рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на которой мы живём, - гигантский голубой магнит. Солнце жёлтый плазменный шар магнит ещё более грандиозный. Галактик и туманности, едва различимые телескопами, - непостижимые по размерам магниты. Термоядерный синтез, магнитодинамическое генерирование электроэнергии, ускорение заряженных частиц в синхротронах, подъём затонувших судов всё это области, где требуются грандиозные, невиданные раньше по размерам магниты. Проблема создания сильных, сверхсильных, ультрасильных и ещё более сильных магнитных полей стала одной из основных в современной физике и технике.

Подробнее

Магнитная индукция

Информация пополнение в коллекции 16.10.2004

магнитная составляющая силы Лоренца FM = q[vB]. При указанных направлениях тока в пластинке М и вектора В сила FM направлена вверх (вдоль положительного направления оси OZ). Под действием силы FM частицы должны отклоняться к верхней грани пластинки, так что на верхней грани будет избыток зарядов того же знака, что и q, а на нижней избыток зарядов противоположного знака. В результате этого в пластинке возникнет поперечное электрическое поле, направленное сверху вниз, если заряды q положительны, и снизу вверх, если они отрицательны. Пусть напряженность образовавшегося кулоновского поля будет Е. Сила qЕ, действующая со стороны поперечного электрического поля на заряд q, направлена в сторону, противоположную силе FM . В случае установившегося состояния сила Лоренца (3), действующая на носитель заряда q, равна нулю:

Подробнее

Магнитопроводы

Информация пополнение в коллекции 16.10.2004

При изготовлении разрезных ленточных магнитопроводов разрезание является одной из ответственных операций. Отклонение режимов этой операции от оптимальных может привести к появлению короткозамкнутых витков и наклепу, в результате возрастут потери на вихревые токи. Разрезание магнитопроводов осуществляют различными способами, например, фрезерованием, абразивным кругом, электроискровой обработкой и т. д. При фрезеровании поверхность разреза получается неровной, а витки магнитопровода оказываются короткозамкнутыми. Кроме того, имеет место наклеп и изменение ориентации зерен в месте разреза. Разрезание магнитопроводов абразивным кругом (шероховатость обработанной поверхности Rа 1,25 мкм) и электроискровой обработкой (Rz 20 мкм) дают лучшие результаты. После разрезания абразивным кругом отпадает необходимость применения последующего шлифования. Электроискровая обработка позволяет избежать механического воздействия на магнитопровод и замыкание отдельных его витков. Поверхностный слой, в котором в результате теплового воздействия происходит изменение ориентации зерен до глубины 0,050,08, мм, удаляется при последующем шлифовании торцов магнитопровода.

Подробнее

Лазеры и их применение

Информация пополнение в коллекции 26.07.2004

Лазерная обработка металлов. Возможность получать с помощью лазеров световые пучки высокой мощности до 1012 1016 вт/см2 при фокусировки излучения в пятно диаметром до 10-100 мкм делает лазер мощным средством обработки оптически непрозрачных материалов, недоступных для обработки обычными методами (газовая и дуговая сварка). Это позволяет осуществлять новые технологические операции, например, просверливание очень узких каналов в тугоплавких материалах, различные операции при изготовлении пленочных микросхем, а также увеличения скорости обработки деталей. При пробивании отверстий в алмазных кругах сокращает время обработки одного круга с 2-3 дней до 2 мин. Наиболее широко применяется лазер в микроэлектронике, где предпочтительна сварка соединений, а не пайка. Основные преимущества: отсутствие механического контакта, возможность обработки труднодоступных деталей, возможность создания узких каналов, направленных под углом к обрабатываемой поверхности.

Подробнее

Распространение звука в пространстве и его воздействие на органы слуха человека

Информация пополнение в коллекции 25.06.2004

Область частот гиперзвука соответствует частотам электромагнитных колебаний дециметрового, сантиметрового и миллиметрового диапазонов(так называемые сверхвысокие частоты).Частота 109 Гц в воздухе при нормальном атмосферном давлении и комнатной температуре должна быть одного порядка с длиной свободного пробега молекул в воздухе при этих же условиях. Однако упругие волны могут распространяться в среде только при условии, что их длина волны заметно больше длины свободного пробега частиц в газах или больше межатомных расстояний в жидкостях и твёрдых телах. Поэтому в газах ( в частности в воздухе) при нормальном атмосферном давлении гиперзвуковые волны распространяться не могут. В жидкостях затухание гиперзвука очень велико и дальность распространения мала. Сравнительно хорошо гиперзвук распространяется в твёрдых телах монокристаллах, особенно при низкой температуре. Но даже в таких условиях гиперзвук способен пройти расстояние лишь в 1, максимум 15 сантиметров.

Подробнее

Гамма-излучение

Информация пополнение в коллекции 22.05.2004

Испускание ядром γ-кванта не влечет за собой изменения атомного номера или массового числа, в отличие от других видов радиоактивных превращений. Ширина линий гамма-излучений чрезвычайно мала (~10-2 эв). Поскольку расстояние между уровнями во много раз больше ширины линий, спектр гамма-излучения является линейчатым, т.е. состоит из ряда дискретных линий. Изучение спектров гамма-излучения позволяет установить энергии возбужденных состояний ядер. Гамма-кванты с большими энергиями испускаются при распадах некоторых элементарных частиц. Так, при распаде покоящегося π0- мезона возникает гамма-излучение с энергией ~70Мэв. Гамма-излучение от распада элементарных частиц также образует линейчатый спектр. Однако испытывающие распад элементарные частицы часто движутся со скоростями, сравнимыми с скоростью света. Вследствие этого возникает доплеровское уширение линии и спектр гамма-излучения оказывается размытым в широком интервале энергий. Гамма-излучение, образующееся при прохождении быстрых заряженных частиц через вещество, вызывается их торможением к кулоновском поле атомных ядер вещества. Тормозное гамма излучение, также как и тормозное рентгеноовское излучение, характерезуется сплошным спектром, верхняя граница которого совпадает с энергией заряженной частицы, например электрона. В ускорителях заряженных частиц получают тормозное гамма- излучение с максимальной энергией до нескольких десятков Гэв.

Подробнее

Акустические свойства полупроводников

Информация пополнение в коллекции 15.04.2004

А что будет с электронами в полупроводнике? Они перераспределятся в пространстве, стремясь стечь с потенциальных «горбов» и заполнить потенциальные «ямы». При этом уменьшится первоначальный потенциал (φ0, или, как говорят, произойдет его экранирование электронами проводимости. Поэтому первый вопрос, который следует решить: как перераспределяются электроны в поле потенциала и каким образом они его будут экранировать? Для решения этого вопроса следует выяснить, как нужно описывать движение электрона в поле звуковой волны. Это существенно зависит от того, какова величина соотношения между длиной звуковой волны 2л/q и длиной l свободного пробега электронов какова величина параметра ql. Этот параметр играет центральную роль в теории акустических свойств проводников; при различных его значениях электроны по-разному взаимодействуют со звуком. Обычно в пьезоэлектрических полупроводниках ql «1, поэтому пока ограничимся рассмотрением этого случая. В чистых металлах при низких температурах может выполняться противоположное неравенство. Об этом пойдет речь в следующей главе.

Подробнее

Энергетический феномен вакуума

Статья пополнение в коллекции 27.03.2004

Описание эффекта вихревого движения среды проведем на примере расплавленного олова. Кювета с оловом помещается в магнитное поле, вектор магнитной индукции которого направлен вертикально (рис.12а). На рисунке изображены: 1 - сосуд, 2 - расплавленный металл, 3 - спиральная катушка, 4 - металлическое кольцо, 5 электрод, "S" - южный магнитный полюс, "N" - северный магнитный полюс. Четыре прямые стрелки на рисунке показывают положение стрелки компаса при проведении эксперимента. В центральной части сосуда в расплавленный металл опущен электрод. Второй электрод выполнен кольцевым. Он установлен по периметру сосуда и опущен в жидкость. При протекании тока через электропроводную жидкость, последняя приходит в вихревое движение, наблюдающееся в зоне между центральным и периферийным электродами с центром вихря у центрального электрода. Направление движения расплавленного металла показано стрелкой. Эффект хорошо виден на кадрах видеосъемки эксперимента (рис.12б и 12в). Частота вращения максимальна в центре и уменьшается к периферии. Вихревое движение расплавленного металла появляется даже при незначительном токе. Начиная с тока в несколько ампер, оно уверенно наблюдается визуально. При дальнейшем увеличении тока интенсивность вихревого движения резко возрастает, что приводит к образованию глубокой воронки в центре сосуда (рис.12б). При изменении направления магнитного поля или при изменении полярности приложенного напряжения направление вихревого движения меняется на противоположное. Мы считаем, что подобный эффект проявляется в Природе и приводит к образованию вихрей, торнадо, циклонов [20].

Подробнее

Электричество и магнетизм

Методическое пособие пополнение в коллекции 18.11.2001

Угол между горизонтальной составляющей вектора В и плоскостью географического меридиана называется магнитным склонением α и измеряется при помощи деклинаторов. В результате неоднородности земного магнитного поля его вектор индукции на экваторе направлен строго горизонтально, на магнитных полюсах вертикально, а на всех остальных широтах под некоторым углом к горизонту. Этот угол называется магнитным наклонением θ, которое измеряется посредством инклинаторов. Существование магнитного наклонения приводит к тому, что северный полюс магнитной стрелки, подвешенной в северном полушарии, располагается несколько ниже южного полюса, а в южном полушарии наоборот (на глаз это незаметно). Такую ориентацию можно описать векторной суммой горизонтальной и вертикальной составляющих вектора индукции магнитного поля Земли (рис. 2). Вертикальную составляющую этого поля измеряют при помощи упомянутого выше инклинатора, а горизонтальную при помощи тангенс-гальванометра. В стрелочном инклинаторе главной частью является магнитная стрелка с горизонтальной осью, проходящей через центр тяжести стрелки. Если вертикальную плоскость качания стрелки совместить с плоскостью магнитного меридиана, магнитная ось стрелки устанавливается по направлению вектора напряженности магнитного поля. Магнитное наклонение отсчитывается по вертикальному кругу с делениями. Более точные индукционные инклинаторы позволяют измерить наклонение с точностью до 0,1΄. В таком приборе индукционная катушка вращается вокруг оси, лежащей в плоскости ее витков. Прибор дает возможность ориентировать ось в любом направлении. Если она не совпадает с вектором напряженности магнитного поля Земли, то магнитный поток сквозь контур катушки при ее вращении меняется, и в ней индуцируется эдс. При совпадении оси вращения с направлением вектора напряженности поток сквозь ее контур остается постоянным, эдс не индуцируется, и включенный в цепь катушки чувствительный гальванометр не дает отклонений. Угол между горизонтальной плоскостью и осью катушки при отсутствии отклонений в гальванометре отсчитывается по вертикальному кругу, соединенному с осью катушки. Точные измерения показали, что в настоящее время горизонтальная составляющая вектора магнитной индукции B на поверхности планеты принимает значения от 0 до 41 мкТл, а полный вектор индукции B0 изменяется в пределах от +62 до 73 мкТл.

Подробнее

Люминесцентные свойства нанокристаллов сульфида кадмия

Дипломная работа пополнение в коллекции 15.11.2001

 

  1. Екимов А.И., Онущенко А.А. Оптические свойства полупроводниковых микрокристаллов. // Письма в ЖЭТФ.-1994.-Т.40,№8.-С.337-340.
  2. Ekimov A.I., Efros ALL., Onushchenko A.A. Quantum size effect in semiconductor microcrystals. // Solid State Communication.-1995. -V.56.,№ 11. -Р.921-924.
  3. Походенко В.Д., Кучмий С.Я., Коржак А.В., Крюков А.И. Фотохимическое поведение наночастиц сульфида кадмия в присутствии восстановителей. // Теоретическая и экспериментальная химия.-1996.-Т.32,№2.-С.102-106.
  4. Jialong Zhao, Kai Dau, Yimin Chen. Temperature dependence of photoluminescence in CdS nanocrystals prepared by sol-gel method // Journal of Luminescence.-1996.-V.67,№66.-P.332-336.
  5. Екимов А.И., Эфрос Ал.Л. Спектроскопические исследования квантового размерного эффекта в полупроводниковых микрокристаллах. // Материалы XII Зимней школы по физике полупроводников.-ФТН, 27 февраля-6 марта 1985 г.-Л.:Б.н.-1986.-С.65-106.
  6. Н.Р.Кулиш, В.П.Кунец, М.П.Лисица. Оптические методы определения параметров нанокристаллов в квазинульмерных полупроводниковых структурах. // Украинский физический журнал.-1996.-Т.41,№11-12.-С.1075-1081.
  7. . Екимов А.И., Онущенко А.А. Квантовый размерный эффект в оптических спектрах полупроводниковых микрокристаллов. // Физика и техника полупроводников.- 1992.-Т. 1 б,Вып.7.-С. 1215-1223.
  8. Клейкий С.В., Кулиш Н.Р., Кунец В.П. и др. Оптические свойства нанокристаллических полупроводников CdS с размерным квантованием. // Украинский физический журнал.-1991.-Т.36,№1.-С. 18-28.
  9. Акимов И.А., Денисюк И.Ю., Мешков А.М. Нанокристаллы полупроводников в полимерной матрице - новые оптические среды. // Оптика и спектроскопия.- 1992. -Т.72,Вып.4.-С. 1026-1032.
  10. Воронцова М.М., Малушин Н.В., Скобеева В.М., Смынтына В.А. Оптические и люминесцентные свойства нанокристаллов сульфида кадмия. // Научный сборник Фотоэлектроника.-2002.-№11.-С. 104-106.
  11. Груздков Ю.А., Савинов Е.Н., Коломийчук В.Н., Пармон В.Н. Фотолюминесценция и морфологические особенности строения малых частиц сульфида кадмия, внедренных в сульфированный фторопласт. // Химическая физика.-1998.-Т.7,№9.-С. 1222-1230.
  12. S.R.Cordero. P.J. Carson, R.a.Estabrook, G.F. Strouse, S.K. Buratto. Photo-Activated Luminescence of CdSe Quantum Dot Monolayers// J. Phys. Chem. B 2000, 104, 12137-12142.
  13. Greenham N.C., Samuel I.D.W., Hayes G.R., Phillips R.T., Kessener Y.A.R.R., Moratti S.C., Holmes A.B., Friend R.H. Chem. Phys. Lett. 1995,241,89.
  14. Nirmal M., Dabbousi B.O., Bawendi M.G., Macklin J.J., Trautman J.K., Harris T.D., Brus I.E., Nature 1996,383,802-804.
  15. В.И. Гавриленко, А.М. Грехов, Д.В. Корбутяк, В.Г. Литовченко. Оптические свойства полупроводников. // Наукова думка. 1987. С. 390-393.
  16. Ермолович И.Б., Матвиевская Г.И., Шейнкман М.К. О природе центров оранжевой и красной люминесценции в сульфиде кадмия. // Физика и техника полупроводников.-1995 .-Т.9,№8.-С. 1620-1623.
  17. Шейнкман М.К., Ермолович И.Б., Беленький Г.Л. Механизмы оранжевой, красной и инфракрасной фотолюминесценции в сульфиде кадмия и параметры соответствующих центров свечения. // Физика твердого тела.-1998.-Т.48,№9.-С.1215-1220.
  18. Ермолович И.Б., Матвиевская Г.И., Пекарь Г.С. Люминесценция монокристаллов сульфида кадмия, легированных различными донорами и акцепторами. // Украинский физический журнал. -1993. -T.I 8,№5,-С.729-738.
  19. Сердюк В.В., Малушин Н.В. Температурная зависимость интенсивности красной полосы люминесценции монокристаллов CdS. // Оптика и спектроскопия.-1989.-Т.26,Вып.4.-С.656-659.

Подробнее

Фотоэффект

Информация пополнение в коллекции 31.08.2001

В теории Эйнштейна законы фотоэффекта объясняются следующим образом:

  1. Интенсивность света пропорциональна числу фотонов в световом пучке и поэтому определяет число электронов, вырванных из металла.
  2. Второй закон следует из уравнения: mv 2 /2=hv-A.
  3. Из этого же уравнения следует, что фотоэффект возможен лишь в том случае, когда энергия поглощённого фотона превышает работу выхода электрона из металла. Т. е. частота света при этом должна превышать некоторое определённое для каждого вещества значение, равное A>h. Эта минимальная частота определяет красную границу фотоэффекта:

Подробнее
<< < 158 159 160 161 162