Математика и статистика

  • 21. Абсолютные и относительные погрешности
    Контрольная работа пополнение в коллекции 01.05.2012

    1. В соответствии с вариантом задания округлить число до шести, пяти, четырех и трех значащих цифр и найти ошибки, абсолютные и относительные погрешности такого округления

  • 22. Абстрактная теория групп
    Информация пополнение в коллекции 12.01.2009

    любая подгруппа Рассмотрим множество - централизатор подгруппы H в группе G. Из определения вытекает, что если , то , то есть . Теперь ясно, что если , то и и значит централизатор является подгруппой. Если группа G коммутативна, то . Если G=H, то централизатор состоит из тех элементов, которые перестановочны со всеми элементами группы; в этом случае он называется центром группы G и обозначается Z(G).

  • Замечание об аддитивной форме записи группы. Иногда, особенно когда операция в группе коммутативна, она обозначается (+) и называется сложением. В этом случае нейтральный элемент называется нулем и удовлетворяет условию: g+0=g. Обратный элемент в этом случае называется противоположным и обозначается (-g). Степени элемента g имеют вид g+g+...+g , называются кратными элемента g и обозначаются ng.
  • 23. Абстрактное отношение зависимости
    Дипломная работа пополнение в коллекции 09.12.2008

    Пусть поле является расширением основного поля Р, а минимальное подкольцо содержащее элементы и поле Р. Подкольцо состоит из всех элементов поля , которые выражаются через элементы и элементы поля Р при помощи сложения, вычитания и умножения: это будут всевозможные многочлены от с коэффициентами из поля Р. Тогда, если для всякого элемента существует единственная запись в виде многочлена от как неизвестных с коэффициентами из поля Р, то есть если различные многочлены от будут различными элементами подкольца , то система элементов , будет называться алгебраически независимой над полем Р, в противном случае алгебраически зависимой. Произвольное множество элементов поля Р называется зависимым, если оно содержит конечное зависимое подмножество. В первом случае кольцо изоморфно кольцу многочленов . Отношение алгебраической зависимости над полем Р является транзитивным отношением зависимости.

  • 24. Автоколебания системы с одной степенью свободы
    Информация пополнение в коллекции 12.01.2009

    Настоящая работа посвящена исследованию движений автоколебаний системы с одной степенью свободы под действием внешней периодической силы. Такие движения представляют интерес для радиотелеграфии (например, к исследованию таких движений сводится теория регенеративного приемника). Особенно замечательно здесь явления так называемого "захватывания". Это явление заключается в том, что, когда период внешней силы достаточно близок к периоду автоколебаний системы, биения пропадают; внешняя сила как бы "захватывает" автоколебания. Колебания системы начинают совершаться с периодом внешнего сигнала, хотя их амплитуда весьма сильно зависит от амплитуды "исчезнувших" автоколебаний. Интервал захватывания зависит от интенсивности сигнала и от автоколебательной системы.

  • 25. Автокорреляционная функция. Примеры расчётов
    Курсовой проект пополнение в коллекции 26.08.2008

     

    1. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высшая школа, 1977.
    2. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Высшая школа, 1997.
    3. Калинина В.Н., Панкин В.Ф. Математическая статистика. М.: Высшая школа, 1994.
    4. Мацкевич И.П., Свирид Г.П., Булдык Г.М. Сборник задач и упражнений по высшей математике (Теория вероятностей и математическая статистика). Минск: Вышейша школа, 1996.
    5. Тимофеева Л.К., Суханова Е.И., Сафиулин Г.Г. Сборник задач по теории вероятностей и математической статистике / Самарск. экон. ин-т. Самара, 1992.
    6. Тимофеева Л.К., Суханова Е.И., Сафиулин Г.Г. Теория вероятностей и математическая статистика / Самарск. гос. экон. акад. Самара, 1994.
    7. Тимофеева Л.К., Суханова Е.И. Математика для экономистов. Сборник задач по теории вероятностей и математической статистике. М.: УМиИЦ «Учебная литература», 1998.
  • 26. Автокорреляционная функция. Примеры расчётов
    Дипломная работа пополнение в коллекции 05.05.2011
  • 27. Автоматизированная обработка статистической информации
    Информация пополнение в коллекции 12.01.2009

    "Табличный процессор", подсистема "Математическая статистика",

  • 28. Автоматы с магазинной памятью
    Информация пополнение в коллекции 09.12.2008

    При этом считается, что если на входе читающей головки авто
    мата находится символ а, автомат находится в состоянии q, а верхний символ рабочей ленты z, то автомат может перейти к состоянию qi, записав при этом на рабочую ленту цепочку γi(1 ≤ i ≤ m)
    вместо символа z, передвинуть входную головку на один символ
    вправо так, как это показано на рис. 1, и перейти в состояние qi. Крайний левый символ γi должен при этом оказаться в верхней
    ячейке магазина. Команда (q, e, z)→(q1, γ1),…, (qm, γm) означает,
    что независимо от входного символа и, не передвигая входной го- +
    ловки, автомат перейдет в состояние qi, заменив символ z магазина
    на цепочку γi(1 ≤ i ≤ m).

  • 29. Адаптивная система компенсации неизвестного запаздывания
    Информация пополнение в коллекции 12.01.2009

    Предлагаемый алгоритм адаптивного наблюдателя обладает важными для практики свойствами: заданной длительностью переходного процесса по параметрам и запаздыванию; отсутствием взаимного влияния переходных процессов настройки в разных параметрических каналах и практической независимостью времени переходных процессов по параметрам и запаздыванию от изменения амплитуды входных и выходных сигналов.

  • 30. Адаптивное параметрическое оценивание квадратно-корневыми информационными алгоритмами
    Дипломная работа пополнение в коллекции 09.12.2008

    Как известно, оценкой максимального правдоподобия является значение оцениваемых параметров, которое максимизирует вероятность события, при котором наблюдения, сгенерированные с подстановкой оцениваемых параметров, совпадают с действительными значениями наблюдений. Вычисление оценки максимального правдоподобия может быть итеративно выполнено при помощи характеристического уравнения, которое включает в себя градиент обратного логарифма функции правдоподобия и информационную матрицу Фишера. Вычисления функции правдоподобия и информационной матрицы Фишера требуют применения фильтра Калмана (а также его производных для каждого параметра оценивания), который, как известно, не обладает достаточной устойчивостью. Бирман, занимавшийся построением численно устойчивых алгоритмов фильтрации, предложил для вычисления оценки максимального правдоподобия итеративным образом использовать квадратно-корневой информационный фильтр. В отличие от традиционного фильтра Калмана, ККИФ позволяет избежать численной неустойчивости, являющейся результатом вычислительных погрешностей, поскольку вместо ковариации ошибки оценок на этапах экстраполяции и обработки измерений, по своей природе положительно определенных, ККИФ оперирует с их квадратными корнями. Это значит, что вычисление квадратного корня равносильно счету с двойной точностью ковариации ошибок, кроме того устраняется опасность утраты матрицей ковариаций свойства положительно определенности. Недостатком данного метода является присутствие операций извлечения квадратного корня.

  • 31. Адгезионные свойства металлов и полупроводников в рамках диэлектрического формализма
    Статья пополнение в коллекции 12.01.2009

    При описании адгезионных свойств материалов особенно эффективно полупроводников использован подход, основанный на диэлектрическом формализме. Использование модельных аппроксимаций для диэлектрических функций данных материалов позволяет определить их адгезионные характеристики на основе только концентрации валентных электронов и ширины запрещенной зоны.Возможности данного подхода при его применении к вычислению молекулярных (ван-дер-ваальсовых) сил взаимодействия поверхностей различных тел показаны, например, в работе [3].Ван-дер-ваальсовы силы обуславливают взаимодействие тел при достаточно больших величинах зазора l между их поверхностями и связаны с корреляционными эффектами взаимодействия посредством флуктуирующего электромагнитного поля, вызванного флуктуациями наведенных дипольных моментов атомов и молекул вещества. При меньших величинах зазора наряду с корреляционной энергией взаимодействия необходимо учитывать флуктуационную составляющую обменной энергии взаимодействия электронов с обменно-коррелляционными дырками. Совместное действие этих обменно-корреляционных эффектов взаимодействия электронов и определяет прежде всего энергию адгезии различных тел как при малых,так и достаточно больших величинах зазора l вплоть до см , где в корреляционной энергии взаимодействия тел необходимо учитывать эффекты запаздывания.В данной работе эффекты запаздывания не учитываются, т.е. считается, что . Основные соотношения теории для обменно-корреляционного взаимодействия флуктуаций электронных плотностей различных тел рассматриваются в длинноволновом приближении.

  • 32. Аккреция
    Статья пополнение в коллекции 12.01.2009

    Если давление магнитного поля в окрестностях небесного тела превышает газовое давление аккрецируемой плазмы, то аккреция останавливается на расстоянии альвеновского радиуса, т.е. на границе магнитосферы и направляется на магнитные полюса небесного тела. Необходимым условием аккреции плазмы на магнитные полюса является ее проникновение внутрь магнитосферы, которое происходит за счет развития гидромагнитных неустойчивостей типа неустойчивости Рэлея-Тейлора. Граница магнитосферы (магнитопауза) определяется условием равенства давлений магнитного поля и набегающей плазмы, т. е. радиус магнитосферы (альвеновский радиус rA) определяется соотношением:

  • 33. Аксиоматика теории вероятностей
    Контрольная работа пополнение в коллекции 22.12.2009

    Наиболее слабая сторона классического определения состоит в том, что очень часто невозможно представить результат испытания в виде совокупности элементарных событий. Еще труднее указать основания, позволяющие считать элементарные события равновозможными. Обычно о равновозможности элементарных исходов испытания говорят из соображений симметрии. Так, например, предполагают, что игральная кость имеет форму правильного многогранника (куба) и изготовлена из однородного материала. Однако задачи, в которых можно исходить из соображений симметрии, на практике встречаются весьма редко. По этой причине наряду с классическим определением вероятности используют и другие определения, в частности статистическое определение: в качестве статистической вероятности события принимают относительную частоту или число, близкое к ней. Например, если в результате достаточно большого числа испытаний оказалось, что относительная частота весьма близка к числу 0,4, то это число можно принять за статистическую вероятность события.

  • 34. Аксиоматика теории множеств
    Информация пополнение в коллекции 12.01.2009

    §1. Система аксиом…………………………………………………………….....4

    1. Аксиома объемности…………………………………………………6
    2. Аксиома пары…………………………………………………………6
    3. Аксиома пустого множества…………………………………………6
    4. Аксиомы существования классов……………………………………8
    5. Аксиома объединения……………………………………………….14
    6. Аксиома множества всех подмножеств……………………………14
    7. Аксиома выделения………………………………………………….15
    8. Аксиома замещения…………………………………………………16
    9. Аксиома бесконечности……………………………………………..16
  • 35. Аксиоматический метод в геометрии
    Доклад пополнение в коллекции 12.01.2009

    На евклидовой плоскости проведём горизонтальную прямую (см. рисунок 1). Эта прямая называется абсолютом (x). Точки евклидовой плоскости, лежащие выше абсолюта, являются точками плоскости Лобачевского. Плоскостью Лобачевского называется открытая полуплоскость, лежащая выше абсолюта. Неевклидовы отрезки в модели Пуанкаре - это дуги окружностей с центром на абсолюте или отрезки прямых, перпендикулярных абсолюту (AB, CD). Фигура на плоскости Лобачевского - фигура открытой полуплоскости, лежащей выше абсолюта (F). Неевклидово движение является композицией конечного числа инверсий с центром на абсолюте и осевых симметрий, оси которых перпендикулярны абсолюту. Два неевклидовых отрезка равны, если один из них неевклидовым движением можно перевести в другой. Таковы основные понятия аксиоматики планиметрии Лобачевского.

  • 36. Аксиоматический метод построения научной теории
    Информация пополнение в коллекции 12.01.2009

    На евклидовой плоскости проведём горизонтальную прямую (см. рисунок 1). Эта прямая называется абсолютом (x). Точки евклидовой плоскости, лежащие выше абсолюта, являются точками плоскости Лобачевского. Плоскостью Лобачевского называется открытая полуплоскость, лежащая выше абсолюта. Неевклидовы отрезки в модели Пуанкаре - это дуги окружностей с центром на абсолюте или отрезки прямых, перпендикулярных абсолюту (AB, CD). Фигура на плоскости Лобачевского - фигура открытой полуплоскости, лежащей выше абсолюта (F). Неевклидово движение является композицией конечного числа инверсий с центром на абсолюте и осевых симметрий, оси которых перпендикулярны абсолюту. Два неевклидовых отрезка равны, если один из них неевклидовым движением можно перевести в другой. Таковы основные понятия аксиоматики планиметрии Лобачевского.

  • 37. Аксиоматический метод. Логическое строение геометрии
    Информация пополнение в коллекции 09.12.2008
  • 38. Аксиомы планиметрии
    Доклад пополнение в коллекции 02.04.2010

    Аксиоматический метод появился в Древней Греции, а сейчас применяется во всех теоретических науках, прежде всего в математике. Аксиоматический метод построения научной теории заключается в следующем: выделяются основные понятия, формулируются аксиомы теории, а все остальные утверждения выводятся логическим путём, опираясь на них. Основные понятия выделяются следующим образом. Известно, что одно понятие должно разъясняться с помощью других, которые, в свою очередь, тоже определяются с помощью каких-то известных понятий. Таким образом, мы приходим к элементарным понятиям, которые нельзя определить через другие. Эти понятия и называются основными. Когда мы доказываем утверждение, теорему, то опираемся на предпосылки, которые считаются уже доказанными. Но эти предпосылки тоже доказывались, их нужно было обосновать. В конце концов, мы приходим к недоказываемым утверждениям и принимаем их без доказательства. Эти утверждения называются аксиомами. Набор аксиом должен быть таким, чтобы, опираясь на него, можно было доказать дальнейшие утверждения. Выделив основные понятия и сформулировав аксиомы, далее мы выводим теоремы и другие понятия логическим путём. В этом и заключается логическое строение геометрии. Аксиомы и основные понятия составляют основания планиметрии. Так как нельзя дать единое определение основных понятий для всех геометрий, то основные понятия геометрии следует определить как объекты любой природы, удовлетворяющие аксиомам этой геометрии. Таким образом, при аксиоматическом построении геометрической системы мы исходим из некоторой системы аксиом, или аксиоматики. В этих аксиомах описываются свойства основных понятий геометрической системы, и мы можем представить основные понятия в виде объектов любой природы, которые обладают свойствами, указанными в аксиомах. После формулировки и доказательства первых геометрических утверждений становится возможным доказывать одни утверждения (теоремы) с помощью других. Доказательства многих теорем приписываются Пифагору и Демокриту. Гиппократу Хиосскому приписывается составление первого систематического курса геометрии, основанного на определениях и аксиомах. Этот курс и его последующие обработки назывались "Элементы". Потом, в III в. до н.э., в Александрии появилась книга Евклида с тем же названием, в русском переводе "Начала". От латинского названия "Начал" произошёл термин "элементарная геометрия". Несмотря на то, что сочинения предшественников Евклида до нас не дошли, мы можем составить некоторое мнение об этих сочинениях по "Началам" Евклида. В "Началах" имеются разделы, логически весьма мало связанные с другими разделами. Появление их объясняется только тем, что они внесены по традиции и копируют "Начала" предшественников Евклида. "Начала" Евклида состоят из 13 книг. 1 - 6 книги посвящены планиметрии, 7 - 10 книги - об арифметике и несоизмеримых величинах, которые можно построить с помощью циркуля и линейки. Книги с 11 по 13 были посвящены стереометрии. "Начала" начинаются с изложения 23 определений и 10 аксиом. Первые пять аксиом - "общие понятия", остальные называются "постулатами". Первые два постулата определяют действия с помощью идеальной линейки, третий - с помощью идеального циркуля. Четвёртый, "все прямые углы равны между собой", является излишним, так как его можно вывести из остальных аксиом. Последний, пятый постулат гласил: "Если прямая падает на две прямые и образует внутренние односторонние углы в сумме меньше двух прямых, то, при неограниченном продолжении этих двух прямых, они пересекутся с той стороны, где углы меньше двух прямых". Пять "общих понятий" Евклида являются принципами измерения длин, углов, площадей, объёмов: "равные одному и тому же равны между собой", "если к равным прибавить равные, суммы равны между собой", "если от равных отнять равные, остатки равны между собой", "совмещающиеся друг с другом равны между собой", "целое больше части". Далее началась критика геометрии Евклида. Критиковали Евклида по трём причинам: за то, что он рассматривал только такие геометрические величины, которые можно построить с помощью циркуля и линейки; за то, что он разрывал геометрию и арифметику и доказывал для целых чисел то, что уже доказал для геометрических величин, и, наконец, за аксиомы Евклида. Наиболее сильно критиковали пятый постулат, самый сложный постулат Евклида. Многие считали его лишним, и что его можно и нужно вывести из других аксиом. Другие считали, что его следует заменить более простым и наглядным, равносильным ему: "Через точку вне прямой можно провести в их плоскости не более одной прямой, не пересекающей данную прямую".

  • 39. Аксонометричні проекції
    Информация пополнение в коллекции 20.11.2010

    На рис. 1 показана схема проекціювання осей координат та віднесеної до них точки А на площину . Направлення проекціювання вказано стрілкою S. Одержані при такому проекціюванні аксонометричні осі X', Y', Z' будуть проекціями осей X, Y, Z комплексного креслення. О' аксонометрична проекція початку координат. Точка А' аксонометрична проекція точки А; точка А'1 представляє собою аксонометричну проекцію точки А1. Якщо на кожній з координатних осей Х, У, Z (див. рис. 1) відкласти від точки О відрізки ех, еу, еz, довжини яких дорівнюють одиниці натурального масштабу е, то внаслідок проекціювання одержимо еХ, еY, еZ аксонометричні одиниці виміру. В загальному випадку еХ, еY, еZ не рівні e та не рівні між собою.

  • 40. Акустические резонаторы.
    Информация пополнение в коллекции 12.01.2009

    При восприятии различных звуков человеческое ухо оценивает их прежде всего по уровню громкости, зависящей от потока энергии или интенсивности звуковой волны. Воздействие звуковой волны на барабанную перепонку зависит от звукового давления, т.е. амплитуды p0 колебаний давления в волне. Человеческое ухо является совершенным созданием Природы, способным воспринимать звуки в огромном диапазоне интенсивностей: от слабого писка комара до грохота вулкана. Порог слышимости соответствует значению p0 порядка 10-10 атм., т.е. 10-5 Па. При таком слабом звуке молекулы воздуха колеблются в звуковой волне с амплитудой всего лишь 10-7 см! Болевой порог соответствует значению p0 порядка 10-4 атм. или 10 Па. Таким образом, человеческое ухо способно воспринимать волны, в которых звуковое давление изменяется в миллион раз. Так как интенсивность звука пропорциональна квадрату звукового давления, то диапазон интенсивностей оказывается порядка 1012! Такой огромный диапазон человеческого уха эквивалентен использованию одного и того же прибора для измерения диаметра атома и размеров футбольного поля.