Химия

  • 1301. Химические свойства и область применения полиэтилентерефталата
    Информация пополнение в коллекции 12.01.2011

    Основные характеристики полиэтилентерефталата:

    1. Плотность аморфного полиэтилентерефталата: 1,33 г/см3.
    2. Плотность кристаллического полиэтилентерефталата: 1,45 г/см3.
    3. Плотность аморфно-кристаллического полиэтилентерефталата: 1,38-1,40 г/см3.
    4. Коэффициент теплового расширения (расплав): 6,55·10-4.
    5. Теплопроводность: 0,14 Вт/(м·К).
    6. Сжимаемость (расплав): 99·106 Мпа.
    7. Диэлектрическая постоянная при 23 °С и 1 кГц: 3,25.
    8. Тангенс угла диэлектрических потерь при 1 Мгц: 0,013-0,015.
    9. Относительное удлинение при разрыве:12-55%.
    10. Температура стеклования аморфного полиэтилентерефталата: 67 °С.
    11. Температура стеклования кристаллического полиэтилентерефталата: 81 °С.
    12. Температура плавления: 250-265 °С.
    13. Температура разложения: 350 °С.
    14. Показатель преломления (линия Na) аморфного полиэтилентерефталата: 1,576.
    15. Показатель преломления (линия Na) кристаллического полиэтилентерефталата: 1,640.
    16. Предел прочности при растяжении: 172 МПа.
    17. Модуль упругости при растяжении: 1,41·104 МПа.
    18. Влагопоглощение: 0,3%.
    19. Допустимая остаточная влага: 0,02%.
    20. Морозостойкость: до 60 °С. [3]
  • 1302. Химические свойства лантана
    Информация пополнение в коллекции 25.01.2010

    Всего известно около 70 собственно редкоземельных минералов и еще около 200 минералов, в которые эти элементы входят как примеси. Это свидетельствует о том, что «редкие» земли вовсе не такие уж редкие, а это старинное общее название скандия, иттрия и лантана с лантаноидными не более чем дань уважения прошлому. Они не редки церия в земле больше, чем свинца, а самые редкие из редкоземельных распространены в земной коре намного больше, чем ртуть. Все дело в рассеянности этих элементов и сложности отделения их один от другого. Но, конечно, лантаноиды распространены в природе не одинаково. Элементы с четными атомными номерами встречаются значительно чаще, чем их нечетные соседи. Это обстоятельство, естественно, сказывается на масштабах производств и ценах на редкоземельные металлы. Самые труднодоступные лантаноиды тербий, тулий, лютеций (заметьте, все это лантаноиды с нечетными атомными номерами) стоят дороже золота и платины. А цена церия более 99%-ной чистоты всего 55 рублей за килограмм (данные 1970 г.). Для сравнения укажем, что килограмм мишметалла стоит 6...7 рублей, а ферроцерия (10% железа, 90% редкоземельных элементов, в основном церия) всего пять. Масштабы использования РЗЭ, как правило, пропорциональны ценам...

  • 1303. Химические свойства четырех и шести валентного урана
    Информация пополнение в коллекции 09.12.2008

    Не смотря на сравнительно высокое содержание урана в магматических горных породах он практически не образует промышленных концентраций. Как уже отмечалось повышенные концентрации этого элемента отмечены в щелочных породах. В Ловозерском массиве установлена следующая примерная схема кристаллизации магмы: полевые шпаты, нефелин, эгирин, лампрофиллит, эвдиалит, ферсманит, лопарит. По приведенной последовательности можно предположить, что в щелочных расплавах первыми кристаллизуются минералы содержащие ионы с меньшими валентностями. Причем чем выше концентрация щелочей относительно концентрации высоковалентных катионов, тем сильнее влияние этих щелочей на роль высоковалентных кватионов в минералообразовании. Так появление титанн-цирконий-ниобий-силикатов определяет начало вовлечение урана в магматическое минералообразование. На этом этапе повышаются содержания урана в породообразующих минералах. При повышеной щелочности относительно концентрации Al3+, Fe3+, Ti4+, циркон и торит оразоватся не могут, в результате проявляются ангидридные свойства циркония и кристаллизуется эвдиалит (Na,Ca)6Zr[Si6O18](Cl,OH), это также справедливо и для урана. По силе основности был составлен ряд определяющий вовлечение указаных элементов в состав породообразующих минералов.

  • 1304. Химические системы
    Информация пополнение в коллекции 19.05.2012

    Было бы, однако, неправильно не учитывать той громадной исследовательской работы, которая привела к утверждению системного взгляда на химические знания. Уже с первых шагов химики на интуитивном и эмпирическом уровне поняли, что свойства простых веществ и химических соединений зависят от тех неизменных начал или носителей, которые впоследствии стали называть элементами. Выявление и анализ этих элементов, раскрытие связи между ними и свойствами веществ охватывает значительный период в истории химии, начиная от гипотезы Роберта Бойля (1627-1691) и кончая современными представлениями о химических элементах как разновидностях изотопов, т.е. атомов, обладающих одинаковым зарядом ядра и отличающихся по массе. Этот первый концептуальный уровень можно назвать исследованием различных свойств веществ в зависимости от их химического состава, определяемого их элементами. Химики, как и физики, искали ту первоначальную основу или элемент, с помощью которых пытались объяснить свойства всех простых и сложных веществ.

  • 1305. Химические соединения на основе кремния и углерода
    Информация пополнение в коллекции 13.10.2010

    Качественная особенность химической формы движения материи, и ее переходов в другие формы движения обуславливает разносторонность химической науки и ее связи с областями знания, изучающими и более низшие, и более высшие формы движения. Познание химической формы движения материи обогащает общее учение о развитии природы, эволюции вещества во Вселенной, содействует становлению целостной материалистической картины мира. Соприкосновение химии с другими науками порождает специфические области взаимного их проникновения. Так, области перехода между химией и физикой представлены физической химией и химической физикой. Между химией и биологией, химией и геологией возникли особые пограничные области - геохимия, биохимия, биогеохимия, молекулярная биология. Важнейшие законы химии формулируются на математическом языке, и теоретическая химия не может развиваться без математики. Химия оказывала и оказывает влияние на развитие философии, и сама испытывала и испытывает её влияние.

  • 1306. Химические способы очистки поверхностей полупроводниковых пластин
    Информация пополнение в коллекции 12.01.2009

    ЗагрязненияВозможные источникиВолокна (нейлон, целлюлоза и т. д.) Одежда, ткани, бумажные изделияСиликаты Горные породы, песок, почва, зола, пепелОкислы и окалина Продукты окисления некоторых металловМасла и жирыМасла от машинной обработки, отпечатки пальцев, жиры с открытых участков тела, средства для волос, мази, лосьоны Силиконы Аэрозоли для волос, кремы, лосьоны после бритья, лосьоны для рук, мылоМеталлыПорошки и отходы машинной обработки и шлифовки; изготовление металлических частей; частицы из металлических банок для хранения и металлических контейнеровИонные примесиПродукты дыхания, отпечатки пальцев (хлорид натрия); примеси из очищающих растворов, содержащие ионные детергенты; некоторые флюсы; примеси от предварительной химической операции, такой, как травление или металлизацияНеионные примесиНеионные детергенты, органические материалы для обработкиРастворимые примесиОчищающие растворители и растворыНаиболее трудно удаляются органические и химически связанные с поверхностью загрязнения, а также загрязнения от абразивных материалов, полярные газы и ионы, внедренные в приповерхностный слой пластин.

  • 1307. Химические формулы соединений
    Контрольная работа пополнение в коллекции 08.11.2009

    314. Напишите выражения для констант нестойкости следующих комплексных ионов: [Аg(СN)2]-; [Аg(NН3)2]+; [Аg(SСМ)2]-. Зная, что они соответственно равны 1,0*10-21, 6,8*10-8, 2,1*10-11, укажите в каком растворе, содержащем эти ионы, при равной молярной концентрации ионов Аg+ больше?

  • 1308. Химические элементы, их связи и валентность
    Контрольная работа пополнение в коллекции 24.03.2011

    Историческая справка. В донаучный период химии как нечто непреложное принималось учение Эмпедокла о том, что основу всего сущего составляют четыре стихии: огонь, воздух, вода, земля. Это учение, развитое Аристотелем, полностью восприняли алхимики. В 8-9 веках они дополнили его представлением о сере (начале горючести) и ртути (начале металличности) как составных частях всех металлов. В 16 веке возникло представление о соли как начале нелетучести, огнепостоянства. Против учения о 4 стихиях и 3 началах выступил Р. Бойль, который в 1661 году дал первое научное определение химических элементов как простых веществ, которые не состоят из каких-либо других веществ или друг из друга и образуют все смешанные (сложные) тела. В 18 веке почти всеобщее признание получила гипотеза И. И. Бехера и Г. Э. Шталя, согласно которой тела природы состоят из воды, земли и начала горючести - флогистона. В конце 18 века эта гипотеза была опровергнута работами А. Л. Лавуазье. Он определил химические Элементы как вещества, которые не удалось разложить на более простые и из которых состоят другие (сложные) вещества, то есть по существу повторил формулировку Бойля. Но, в отличие от него, Лавуазье дал первый в истории науки перечень реальных химических Элементов. В него вошли все известные тогда (1789) неметаллы (О, N, H, S, Р, С), металлы (Ag, As, Bi, Co, Ca, Sn, Fe, Mn, Hg, Mo, Ni, Au, Pt, Pb, W, Zn), а также "радикалы" [муриевый (Cl), плавиковый (F) и борный (В)] и "земли" - еще не разложенные известь СаО, магнезия MgO, барит ВаО, глинозем Аl2О2 и кремнезем SiO2 (Лавуазье полагал, что "земли" - вещества сложные, но пока это не было доказано на опыте, считал их химическими Элементами). Как дань времени он включил в список химических Элементов невесомые "флюиды" - свет и теплород. Едкие щелочи NaOH и KOH он считал веществами сложными, хотя разложить их электролизом удалось позже - только в 1807 году (Г. Дэви). Разработка Дж. Дальтоном атомной теории имела одним из следствий уточнение понятия элемента как вида атомов с одинаковой относительной массой (атомным весом). Дальтон в 1803 составил первую таблицу атомных масс (отнесенных к массе атома водорода, принятой за единицу) пяти химических Элементов (О, N, С, S, P). Тем самым Дальтон положил начало признанию атомной массы как главной характеристики элемента. Дальтон, следуя Лавуазье, считал химические Элементы веществами не разложимыми на более простые.

  • 1309. Химический анализ силикатов и керамики
    Курсовой проект пополнение в коллекции 10.03.2010

    Главнейшие свойства керамических материалов (прочность, плотность, термостойкость, проницаемость, кислотостойкость и некоторые другие) в значительной степени обусловлены их фазовым составом. Кроме того, на свойства керамических изделий оказывают влияние характер фазовых превращений, последователь-ность образования кристаллических фаз,а также источники их образования. При производстве керамических изделий мономинеральные глины применяются редко. Но и в мономинеральных глинах всегда содержатся примеси, которые оказывают влияние на ход фазовых превращений при обжиге. Применяемые в керамичес-ком производстве глины чаще всего сложены несколькими глинистыми минералами. Характер смеси этих минералов, а также их соотношение влияют на ход фазовых превращений, природу кристаллических фаз и свойства керамических изделий. Поэтому исследование физико химических процессов, происходящих при обжиге огнеупорных и тугоплавких глин различного минералогического состава, позволит установить необ-ходимые условия при составлении керамических масс, а также выбрать режимы обжига, обеспечивающие получение керамических изделий с заданными свойствами. В ранних отечественных работах, посвящённых фазовым превращениям, происходящим при обжиге глин, изучали главным образом вопросы муллитообра- зования причём вопросы образования и развития других фаз не рассматривали. Кроме того, исследователи рассматривали. Кроме того, исследовали в основном глины украинских месторождений. В работе были изучены также каолинитовые глины Боровическо Любытинского месторождения. В этих работах показано, что образование муллита при обжиге глин происходит различно и находится в зависимости от их минерало-гического состава. Например, выход муллита при обжиге в одних и тех же условиях больше у каолинитовых глин, чем у каолинито - гидрослюдистых. При исследовании процесса муллитизации каолинитовых глин установлено, что степень муллитизации этих материалов уменьшается с повышением содержания в них окислов примесей. Другие кристаллические фазы в спеках не определяли. В работе приведены результаты исследования фазового состава обожжённых при различных температурах каолинитовых глин. Образцы обжигали в течение 20 ч. от 800 до 1350˚С с интервалом 50˚С. Показано, что в интервале 950-1350˚С образуется муллит. При обжиге всех исследованных глин образуется также кристобалит. Однако температу-ра образования его у различных глин различна. Автор указывает, что на температуру образования кристал-лических фаз оказывают влияние примеси, а также физическое состояние, которое свойственно метакаоли-нитам, образующимся из различных исходных каолинитовых минералов. Действительно, сравнение химиче-ского и минералогического состава глин с фазовым, показывает, что в хорошо окристаллизованных глинах со сравнительно высоким содержанием щелочных окислов кристобалит образуется при температуре 1150˚С. В таких же глинах с малым содержанием щелочных окислов кристобалит образуется при температуре 1050˚С. При этой же температуре образовался кристобалит при обжиге огнеупорной глины типы фарклей с плохо окристаллизованным каолинитом. Степень упорядоченности исходного каолинита влияет также на количество образующегося муллита. Из глинистого минерала с высокоупорядоченной структурой образуе-тся больше муллита, чем из минерала с неупорядоченной структурой. При исследовании 25 каолинитовых глин с различными кристаллической структурой и содержанием примесей установлено, что в глинах с хорошо выраженной кристаллической структурой муллит образуется при более низкой температуре. Реакция образования муллита растянута во времени. В слабо окристаллизованных глинах происходит быстрое образование муллита при 1200-1250˚С. Кристобалит образуется при температуре 1300˚С. Содержа-ние щелочей в глинах значительно снижает количество кристобалита в обожженном материале, а при содер-жании R2 О выше определённого предела кристобалит не образуется вообще. Особенности действия R2 О выше определённого предела кристобалит не образуется вообще. Особенности действия R2 О на образова-нии кристобалита при обжиге каолинитовых глин рассматриваются в работе. Указывается, что Na2O и K2O препятствуют выделению кристобылита при обжиге глины. Предполагается, что они с кремнезёмом образуют стекло. В литературе имеются указания, что даже очень небольшое количество примесей может сильно влиять на интенсивность экзотермической реакции, протекающей при температуре 975˚С. Магний, фтор, свинец, кальций и фосфор, когда они присутствуют в следах, способствуют развитию кристобалита, в то время как щёлочи замедляют этот процесс или вообще ему препятствуют. В работе указывается, что при нагревании новоселицкого каолинита муллит и кристобалит образуется при температуре 1210˚С. Интенсив-ная кристаллизация кристобалита отмечается при 1250˚С. В глинах со смешанным минеральным составом, содержащим различные глинистые минералы, фазовые превращения изменяются в соответствии с количест-венным соотношением слагающих их минералов. Показано, что для смесей просяновского каолина и часов ярской глины по мере увеличения содержания последней снижается температура эндотермического пика и уменьшается его значение. Первый экзотермический эффект возникает при температуре, характерной для каолинита, но значение его закономерно уменьшается. Такие же наблюдения характерны для второго экзотермического эффекта. Это обстоятельство должно оказывать влияние также на характер развития высокотемпературных фаз.

  • 1310. Химический исследование производственных сточных вод
    Контрольная работа пополнение в коллекции 14.03.2012
  • 1311. Химический синтез белков в промышленности
    Информация пополнение в коллекции 09.12.2008

    Затем наращивают пептидную цепь, пропуская через смолу растворы соответствующих реагентов. Для этого сначала убирают группу, защищающую конечную NH2 группу (2-ая стадия). Пропуская через смолу раствор другой аминокислоты с защищённой аминогруппой в присутствии водоотнимающих реагентов, образуют пептидную связь между первой и второй аминокислотой (3-я стадия). Если затем убрать защитную группу (4-ая стадия), синтез пептида можно вести далее. После наращивания пептидной цепи до нужной величины гидролизуют “якорную” сложноэфирную связь и смывают полипептид со смолы:

  • 1312. Химический состав зерна ячменя
    Курсовой проект пополнение в коллекции 27.03.2010

    К природным аналогам многоатомных фенолов следует отнести и антоцианидины «класс красителей», ответственных за цвета растительного мира. Три антоцианидина: цианидин, пеларгонидин и дельфинидин, встречающихся в природе в виде гликозидов имеют особенно широкое распространение. Все три красителя относятся к классу флавонов и являются пирилиевыми солями. В некоторых случаях окраска цветка растения определяется значением рН его физиологического раствора. Например, в зависимости от рН цианидин окрашивает как голубые, так и красные цветы. Антоцианы ответственны за окраску не только цветов, но и плодов. Именно с плодами они и попадают в наш организм. Желтый и красный перец, вишня, виноград, апельсины, как и другие яркоокрашенные плоды, содержат значительные количества антоцианов. Производные фенолов помогают человеку не только как пищевые добавки. В качестве эффективных антиоксидантов они нашли применение для стабилизации при хранении многих пищевых веществ (растительные и животные масла), моторных масел, нефтяных продуктов.

  • 1313. Химический состав минеральных вод
    Информация пополнение в коллекции 17.12.2010

    Йодобромистые воды минеральные воды различного состава, содержащие йод (5 мг/л) и бром (25 мг/л) Чаще всего йод и бром присутствует в хлоридных натриевых водах. В зависимости от преобладания йодидов или бромидов эти воды могут быть могут быть йод-бромистыми, бром-йодистыми, бромистыми или йодистыми. В литературе по бальнеологии чаще употребляется термины бромные, йодные, йодобромные и бром-йодные воды. Мы считаем употребление этих терминов ошибочным. Как уже сказано выше, настоящий прорыв в изучении минеральных вод начался после революционных открытий в химии, которые в основном связывают с именем А.Лавуазье. Бром открыт в 1825г. французским химиком А.Ж.Баларом при изучении рассолов средиземноморских соляных промыслов; назван от греч. bromos зловонный. При растворении в воде бром частично реагирует с ней с образованием бромистоводородной кислоты и неустойчивой бромноватистой кислоты Раствор брома в воде, обладающий неприятным запахом, называется бромной водой. В природе бром присутствует главным образом в виде ионов, которые путешествуют вместе с грунтовыми водами. Бромистые соли натрия, калия, магния встречаются в отложениях хлористых солей, в калийных солях сильвине и карналлите. Йод, галоген также как и бром, плохо растворяется в воде, но хорошо растворяется в соляных растворах с образованием йодидов. Благодаря хорошей растворимости в воде бромистые и йодистые соли накапливаются в морской воде, рапе соляных озер и подземных рассолах.

  • 1314. Химический элемент ванадий
    Информация пополнение в коллекции 31.01.2010

    Давно установлено, что расплавленная сталь поглощает много газов, прежде всего кислорода и азота. Когда металл остывает, газы остаются в слитках в виде мельчайших пузырьков. При ковке пузырьки вытягиваются в нити (волосовины) и прочность слитка в разных направлениях становится неодинаковой. Ванадий, введенный в сталь, активно реагирует с кислородом и азотом, продукты этих реакций всплывают на поверхность металла жидким шлаком, который удаляется в процессе плавки. Тем самым повышается прочность отливок, оставшийся ванадий раньше других элементов взаимодействует с растворенным в стали углеродом, образуя твердые и жаростойкие соединения карбиды. Карбиды ванадия плохо растворяются в железе и неравномерно распределяются в нем, препятствуя образованию крупных кристаллов. Сталь получается мелкозернистой, твердой и ковкой. Структура ванадиевой стали сохраняется и при высоких температурах. Поэтому резцы из нее меньше подвержены деформациям в процессе обработки детали на больших скоростях, а штампы незаменимы для горячей штамповки. Мелкокристаллическая структура обусловливает также высокую ударную вязкость и большую усталостную прочность ванадиевой стали. Практически важно еще одно ее качество устойчивость к истиранию. Это качество можно наглядно проиллюстрировать таким примером: за тысячу часов работы стенки цилиндров дизель-моторов, изготовленных из углеродистой стали, изнашиваются на 0,35...0,40мм, а стенки цилиндров из ванадиевой стали, работавших в тех же условиях, лишь на 0,1мм.

  • 1315. Химический элемент калий
    Информация пополнение в коллекции 11.12.2010

    Встречаются также ванадиевая С. роскоэлит KV2[AISi3O10] (OH)2, хромовая С. хромовый мусковит, или фуксит, и др. В С. широко проявляются изоморфные замещения: К+ замещается Na+, Ca2+, Ba2+, Rb+, Cs+ и др.; Mg2+ и Fe2+ октаэдрического слоя Li+, Sc2+, Jn2+ и др.; Al3+ замещается V3+, Cr3+, Ti4+, Ga3+ и др. Наблюдаются совершенный изоморфизм между Mg2+ и Fe2+ (непрерывные твёрдые растворы флогопит биотит) и ограниченный изоморфизм между Mg2+ Li+ и Al3+Li+, а также переменное соотношение окисного и закисного железа. В тетраэдрических слоях Si4+ может замещаться Al3+, а ионы Fe3+ могут замещать тетраэдрический Al3+; гидроксильная группа (OH) замещается фтором. С. часто содержат различные редкие элементы (Be, В, Sn, Nb, Ta, Ti, Mo, W, U, Th, Y, TR, Bi); часто эти элементы находятся в виде субмикроскопических минералов-примесей: колумбита, вольфрамита, касситерита, турмалина и др. При замене К+ на Ca2+ образуются минералы группы т. н. хрупких С. маргарит CaAl2[Si2Al2O10] (OH)2 и др., более твёрдые и менее упругие, чем собственно С.При замещении межслоевых катионов К+ на H2O наблюдается переход к гидрослюдам, являющимся существенными компонентами глинистых минералов. Следствия слоистой структуры С. и слабой связи между пакетами: пластинчатый облик минералов, совершенная (базальная) спайность, способность расщепляться на чрезвычайно тонкие листочки, сохраняющие гибкость, упругость и прочность. КристаллыС. могут быть сдвойникованы по «слюдяному закону» с плоскостью срастания (001); часто имеют псевдогексагональные очертания. Твёрдость по минералогической шкале 2,53; плотность 2770 кг/м3 (мусковит), 2200 кг/м3 (флогопит), 3300 кг/м3 (биотит). Мусковит и флогопит бесцветны и в тонких пластинках прозрачны; оттенки бурого, розового, зелёного цветов обусловлены примесями Fe2+, Мп2+, Cr2+ и др. ЖелезистыеС. бурые, коричневые, тёмно-зелёные и чёрные в зависимости от содержания и соотношения Fe2+ и Fe3+. С. один из наиболее распространённых породообразующих минералов интрузивных, метаморфических и осадочных горных пород, а также важное полезное ископаемое.

  • 1316. Химический элемент хром
    Информация пополнение в коллекции 23.01.2010

    Гораздо сложнее обстоит дело со сплавами на основе хрома. Большая хрупкость и исключительная сложность механической обработки пока не позволяют широко применять эти сплавы, хотя по жаропрочности и износостойкости они могут потягаться с любыми материалами. В последние годы наметилось новое направление в производстве хромсодержащих сплавов легирование их азотом. Этот обычно вредный в металлургии газ образует с хромом прочные соединения нитриды. Азотирование хромистых сталей повышает их износостойкость, позволяет уменьшить содержание дефицитного никеля в «нержавейках». Быть может, этот метод позволит преодолеть и «необрабатываемость» сплавов на основе хрома? Или здесь придут на помощь другие, пока не известные методы? Так или иначе, надо думать, что в будущем эти сплавы займут достойное место среди нужных технике материалов.

  • 1317. Химическое действие света. Фотография
    Информация пополнение в коллекции 09.12.2008

    Важнейшие химические реакции под действием света и солнца происходят во многих микроорганизмах, траве, зеленых листьях деревьев и растений , дающих нам пищу и кислород для дыхания. Листья поглощают из воздуха углекислый газ и расщепляют его молекулы на составные части: углерод и кислород. Происходит это в молекулах хлорофилла под действием красных лучей солнечного спектра. Этот процесс называется фотосинтезом. Хлорофилл зеленый пигмент, сосредоточенный в хлоропластах и находящийся в непрочном состоянии с белковыми веществами. Наличие хлорофилла является необходимым условием фотосинтеза, т.е. создания органического вещества из углекислоты и воды при участии солнечного света. Эти богатые энергией органические вещества служат пищей для всех других организмов и обеспечивают существование на Земле всего органического мира. В результате фотосинтетической деятельности растений в прошлые геологические эпохи в недрах и на поверхности Земли накопились громадные запасы восстановленного углерода и органических продуктов в виде каменного угля, нефти, горючих газов, сланцев, торфа, а атмосфера обогатилась кислородом. Фотосинтез может протекать только под действием света определенного спектрального состава.

  • 1318. Химия
    Информация пополнение в коллекции 09.12.2008

    В присутствии катализаторов (платины, палладия) водород присоединяется к циклопропану с образованием пропана. Составьте уравнение этой реакции и рассчитайте, какой объем (н.у.) пропана можно получить из 21 г циклопропана, приняв, что объемная доля выхода пропана составляет 95%.

  • 1319. Химия (Шпаргалка)
    Вопросы пополнение в коллекции 09.12.2008

    Изомерия - такое явление, при котором могут существовать несколько вещ-в, имеющих один и тот же состав и одну и ту же молек. массу, но различ строением молекул.

  • 1320. Химия актиноидов (актинидов)
    Реферат пополнение в коллекции 09.12.2008

    С каждым годом доля ядерного горючего в мировом балансе энергоресурсов становится все ощутимее. В наше время каждая четвёртая лампочка в России светит из-за АЭС. Преимущества этого вида топлива несомненны. Но не стоит забывать об опасности радиации. Миллионы людей пострадали. Среди них больше 100 000 погибли из-за ужасной аварии на Чернобыльской АЭС в 1986 году. Да и сейчас территория около ЧАЭС заражена и не пригодна для житья. Пройдёт ещё не менее ста лет, прежде чем человек сможет вернуться и жить там. Но и без аварий не так всё гладко. Ведь использование уранового топлива сопряжено со многими трудностями, из которых едва ли не важнейшая уничтожение образующихся радиоактивных отходов. Спускать их в специальных контейнерах на дно морей и океанов? Зарывать их глубоко в землю? Вряд ли такие способы позволят полностью решить проблему: ведь в конечном счете смертоносные вещества при этом остаются на нашей планете. А не попытаться ли отправить их куда-нибудь подальшена другие небесные тела? Именно такую идею выдвинул один из ученых США. Он предложил грузить отходы атомных электростанций на «грузовые» космические корабли, следующие по маршруту ЗемляСолнце. Разумеется, сегодня подобные «посылки» дороговато обошлись бы отправителям, но, по мнению некоторых оптимистически настроенных специалистов, уже через 10 лет эти транспортные операции станут вполне оправданными.